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Abstract In this paper, we present TropFlux wind stres-

ses and evaluate them against observations along with

other widely used daily air-sea momentum flux products

(NCEP, NCEP2, ERA-I and QuikSCAT). TropFlux wind

stresses are computed from the COARE v3.0 algorithm,

using bias and amplitude corrected ERA-I input data and

an additional climatological gustiness correction. The wind

stress products are evaluated against dependent data from

the TAO/TRITON, PIRATA and RAMA arrays and inde-

pendent data from the OceanSITES mooring networks.

Wind stress products are more consistent amongst each

other than surface heat fluxes, suggesting that 10 m-winds

are better constrained than near-surface thermodynamical

parameters (2 m-humidity and temperature) and surface

downward radiative fluxes. QuikSCAT overestimates wind

stresses away from the equator, while NCEP and NCEP2

underestimate wind stresses, especially in the equatorial

Pacific. QuikSCAT wind stress quality is strongly affected

by rain under the Inter Tropical Convergence Zones. ERA-

I and TropFlux display the best agreement with in situ data,

with correlations[0.93 and rms-differences\0.012 Nm-2.

TropFlux wind stresses exhibit a small, but consistent

improvement (at all timescales and most locations) over

ERA-I, with an overall 17 % reduction in root mean square

error. ERA-I and TropFlux agree best with long-term mean

zonal wind stress observations at equatorial latitudes. All

products tend to underestimate the zonal wind stress sea-

sonal cycle by *20 % in the western and central equatorial

Pacific. TropFlux and ERA-I equatorial zonal wind stresses

have clearly the best phase agreement with mooring data at

intraseasonal and interannual timescales (correlation of

*0.9 versus *0.8 at best for any other product), with

TropFlux correcting the *13 % underestimation of ERA-I

variance at both timescales. For example, TropFlux was the

best at reproducing westerly wind bursts that played a key

role in the 1997–1998 El Niño onset. Hence, we recom-

mend the use of TropFlux for studies of equatorial ocean

dynamics.

Keywords TropFlux � Tropics � Air-sea momentum

fluxes � Wind stress products validation

1 Introduction

The tropics are home to many climatically relevant phe-

nomena. The two most spectacular examples of such

globally relevant modes of climate variability are the El

Niño Southern Oscillation (ENSO) and Madden-Julian

Oscillation (MJO). ENSO is the strongest mode of

B. Praveen Kumar (&) � M. Lengaigne

Physical Oceanography Division,

National Institute of Oceanography, Council of Scientific

and Industrial Research, Dona Paula, Goa 403004, India

e-mail: pkb_ocean@yahoo.co.in; bpraveen@nio.org

J. Vialard � M. Lengaigne � F. Pinsard
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interannual climate variability on the planet (e.g., McPha-

den 2004; McPhaden et al. 2006). Although it largely arises

from positive air-sea feedbacks in the tropical Pacific, it

has consequences that are felt around the world. The MJO

is the dominant mode of intraseasonal variability, with

worldwide teleconnections (e.g., Zhang 2005) including

impacts on weather over the North Atlantic (Cassou 2008).

There is also well-known ocean–atmosphere interannual

variability in the Indian Ocean (the Indian Ocean Dipole or

IOD, e.g., Saji et al. 1999; Webster et al. 1999) and in the

tropical Atlantic (the Atlantic Meridional Mode, e.g., Xie

and Carton 2004).

For most of the aforementioned climate phenomena, air-

sea interactions play an essential role. For instance, ENSO

and IOD events grow as a result of the so-called Bjerknes

feedback (e.g., Bjerknes 1966; Wang and Picaut 2004;

Annamalai et al. 2003). The Bjerknes feedback involves

the following loop: surface momentum flux anomalies

induce changes in ocean circulation that lead to the growth

of Sea Surface Temperature (SST) anomalies, which in

turn reinforce the original momentum flux anomalies.

Surface momentum fluxes (i.e. wind stresses, generally

expressed in units of Nm-2) are hence an essential measure

of the air-sea coupling in the Bjerknes feedback. While

ocean–atmosphere coupling is associated to a larger extent

with surface heat fluxes rather than to surface wind stresses

for MJO events (e.g., Duvel and Vialard 2007; Jayakumar

et al. 2011; Drushka et al. 2011; Vialard et al. 2012),

equatorial wind stress perturbations associated with the

MJO drive strong basin-wide dynamical response, both in

the Indian Ocean (e.g., Han et al. 2011; Vialard et al. 2009;

Nagura and McPhaden 2012) and the Pacific Ocean (e.g.,

Zhang and McPhaden 2006; Lengaigne et al. 2002).

Westerly wind bursts in the western equatorial Pacific

induce westward currents in the central Pacific that play a

key role in the westward migration of the warm pool

associated with the onset of El- Niño events (Lengaigne

et al. 2004). At decadal timescales, there is also evidence of

clear, Indo-Pacific wide sea level variations forced by wind

stress variations (e.g., Lee and McPhaden 2008; Han et al.

2010; Nidheesh et al. 2012).

Wind stress is not only important in air-sea interactions

and forced oceanic variability, as mentioned above, but also

plays an important role in the tropical mean state. The

pressure gradient associated with climatological east–west

tilt of the thermocline in the tropical Pacific and Atlantic

oceans is to first order in balance with zonal wind stress

(e.g., McCreary 1981a, b). The strong Wyrtki jets that

develop in spring and fall in the equatorial Indian Ocean

result from the semi-annual relaxation of the weak wester-

lies that otherwise prevail (e.g., Schott and McCreary 2001;

Nagura and McPhaden. 2010a). Away from the equator,

wind stress curl also plays a prominent role in setting

equatorial current systems like the South Equatorial Current

or North Equatorial Counter-Current in the Atlantic and

Pacific oceans (Rodrigues et al. 2007; Kessler et al. 2003).

Accurate knowledge of air-sea momentum fluxes is thus

important to study the tropical mean state and variability

from intraseasonal to decadal time-scales. Momentum

fluxes are usually calculated from wind speed using the

empirical formulae s = q Cd w2 where s is the wind stress

magnitude, q is surface air density, Cd the drag coefficient,

and w the wind speed relative to the ocean surface (often

assumed to be stationary). The drag coefficient is in prin-

ciple a non-linear function of the wind speed, atmospheric

stability and sea state. There is a wide choice of different

methods available in literature for drag coefficient calcu-

lation (Smith 1988; Large and Pond 1981; Hellerman and

Rosenstein 1983; Fairall et al. 1996, 2003). Assessing the

relative merits of different drag coefficient estimation

methods is not the aim of this study, and has been discussed

elsewhere (Bruke et al. 2003; Kochanski et al. 2006). In

this paper, we have selected the COARE v3.0 algorithm

because it takes atmospheric stability into account, has

been developed purposely for tropical regions, and pro-

vides an estimated accuracy of 5 % (for wind speed below

10 ms-1) or 10 % (for wind speed from 10 to 20 ms-1)

(Fairall et al. 2003).

While there are uncertainties in drag formulae, another

source of uncertainty in surface momentum flux estimates

is wind speed itself. Historically, ship-based observations

provide the major source of wind data over the global

oceans (e.g., Bunker 1976; Hellerman and Rosenstein

1983; da Silva et al. 1994; Josey et al. 2002). One major

drawback of observation based momentum flux datasets is

the poor spatial and temporal coverage of in situ mea-

surements. In situ observation based momentum fluxes are

largely limited to frequent shipping lines in the northern

hemisphere (Risien and Chelton 2008) and do not span

more than 1 month for each cruise. In situ observation

based momentum fluxes thus generally do not exceed

1-month temporal resolution. The increase in ship size and

related higher anemometer heights above the ocean surface

has also led to a bias towards increased wind speeds

(Tokinaga and Xie 2011).

Of late, two interesting alternatives provide higher res-

olution wind speed datasets over the tropical oceans:

satellite scatterometry and re-analyses. Satellite scatter-

ometers are designed to measure surface wind speed and

direction by electromagnetic radar backscatter from the

rough ocean surface at different angles. One of the most

successful and widely used scatterometer missions is

QuikSCAT, starting in July 1999 and ending in October

2009, whose sun-synchronous orbit allowed it to sample

90 % of the global ocean daily (Schlax et al. 2001). One

major drawback of these efforts using satellite data
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products is their limited life span since most of the satellite

missions last about 10 years or less. While the focus of this

paper is on timely wind stresses products, we include

QuikSCAT in our wind stress evaluations because it is a

widely used product that was available until recently.

Re-analyses also provide an interesting alternative for

estimating wind variations at high temporal resolution. Re-

analyses are generated at operational weather centers using

an up-to-date version of numerical weather forecasting

model and data assimilation system to retrospectively re-

process past atmospheric observations over a long period.

The advantage of re-analyses is that they take advantage of

any relevant information to estimate wind speed (e.g.,

pressure, through the geostrophic relation) and use numer-

ical models to spatially and temporally interpolate sparse

data. Recent timely re-analyses include the National Centre

for Environmental Prediction (NCEP reanalysis, 1948–

present, Kalnay et al. 1996), the Department of Energy

(DOE) or NCEP2 re-analysis (1979–present, Kanamitsu

et al. 2002), and the new European Centre for Medium

Range Weather Forecast interim re-analysis (ERA-I, 1979–

present, Dee et al. 2011). Note also the recent effort by the

OAFlux project to provide a synthesis from the various

existing re-analyses and surface observations (Yu et al.

2007). While this project provides good quality surface flux

and wind data, it does not, however, yet provide surface

momentum flux estimates.

Several past studies have used in situ data to evaluate

wind stress products or have compared existing products.

Rienecker et al. (1996), Pegion et al. (2000) and Meissner

et al. (2001) compare several satellite, in situ and re-

analysis based wind products. Bentamy et al. (1996) and

Chelton and Freilich (2005) evaluate scatterometer wind

stress products against mooring data. Josey et al. (2002)

evaluate an in situ data based wind stress climatology

against climatologies derived from other in situ datasets,

re-analyses and operational wind products. Hackert et al.

(2001) compare winds products during the 1997–1998 El

Niño event through the use of an ocean general circulation

model. But to our knowledge, there is no published

extensive intercomparison and evaluation of recent, timely

wind stress estimates from re-analyses (NCEP, NCEP2,

ERA-I) against available in situ observations.

In a companion paper (Praveen Kumar et al. 2012), we

introduced a new, timely air-sea heat flux product with daily

resolution for the tropical region (30�N-30�S)—Trop-

Flux—and evaluated it, along with other products (NCEP,

NCEP2, ERA-I, OAFlux), against available observations

from the global tropical moored buoy array (McPhaden

et al. 1998; Bourlès et al. 2008; McPhaden et al. 2010) and

OceanSITES (http://www.OceanSITES.org) data. In the

present paper, we build on the methodology presented in

Praveen Kumar et al. (2012) to estimate TropFlux wind-

stresses, and compare them with other products (NCEP,

NCEP2, ERA-I and QuikSCAT wind stresses) and esti-

mates from moored buoys. The rest of the paper is orga-

nized as follows. Section 2 describes the various datasets

used in this study. In Sect. 3, we describe the TropFlux wind

stress computation methodology, and evaluate TropFlux

against ERA-I, from which it is derived. A detailed evalu-

ation and validation of TropFlux, NCEP, NCEP2, ERA-I

and QuikSCAT wind stress products are provided in Sect. 4,

including a discussion of their differences at various time-

scales (long term-bias, interannual, seasonal and intrasea-

sonal variability), with a focus on equatorial dynamics. We

summarize and discuss the main results in Sect. 5.

2 Datasets

In this section we describe the various wind stress products

evaluated in this paper, the (dependent) global tropical

moored buoy array evaluation data, and the independent

data from OceanSITES project. Praveen Kumar et al.

(2012) provide a detailed description of these datasets, and

we will hence present them in a more concise way below.

2.1 Gridded data products

We used three re-analyses (NCEP, NCEP2 and ERA-I) and

one satellite based gridded wind stress product (Quik-

SCAT) in this study. All four daily products were re-

gridded to a common 1� 9 1� grid.

NCEP re-analysis extends from 1948 to present, with an

original *1.9� resolution (Kalnay et al. 1996). NCEP2 re-

analysis is an alternative version of NCEP reanalysis,

which addresses some of the known problems of NCEP re-

analysis (Kanamitsu et al. 2002). The main modifications

likely to affect wind over the oceans in NCEP2 are a new

shortwave radiation and cloud scheme. NCEP2 is available

from 1979 to present. We use daily average wind stresses

from NCEP and NCEP2, obtained as the mean of four 6 h-

averages obtained from the first 6 h of the 00, 06, 12, and

18UTC forecasts. The ERA-I re-analysis (Dee et al. 2011),

available from 1979 to present, uses an advanced 4-D Var

assimilation approach, and provides data at a higher 0.75�
spatial resolution. ERA-I 10 m winds, 2 m air temperature

and humidity are obtained as the mean of 4 analyzed fields

at 00, 06, 12 and 18 UTC. Wind-stress from ERA-I is

computed as the average of the two 12-h forecasts starting

at 00 and 12UTC. The boundary layer scheme used in the

ERA-I re-analysis has a formulation in essence very similar

to the COARE v3.0 algorithm (A. Beljaars, personal

communication, 2012).

CERSAT (Centre ERS d’Archivage et de Traitement)

provides gridded fields of wind parameters retrieved from

TropFlux wind stresses over the tropical oceans
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the NASA (National Aeronautics and Space Administra-

tion) Scatterometer on board QuikSCAT at 0.5� 9 0.5�
resolution over the global oceans (80�S–80�N) from July

1999 to November 2009 which was the end of the satellite

mission (Bentamy et al. 2002). Daily average synoptic

fields are obtained from discrete observations from a sta-

tistical interpolation with an objective method. QuikSCAT

uses Smith (1988) drag coefficient scheme for stress

computation, but only takes wind speed variation into

account (surface air temperature and humidity variations

are neglected). Several studies (e.g., Milliff et al. 2004;

Gille 2005; Bentamy et al. 2012) have already underlined

that wind speed (and stress) retrieval is very difficult in

rainy conditions because of the backscatter of raindrops in

the atmospheric column above the surface. The CERSAT

version of QuikSCAT data uses the Impact based Multi-

dimensional Histogram method (see Huddleston and Stiles.

2000 for details) for rain flagging. Bentamy et al. (2012)

recently demonstrated that their estimation of wind speed

could be significantly improved by applying a stricter

flagging of rainy situations, but this improved estimate is

not available yet. As discussed in the introduction, the wind

stress is normally computed as a function of the wind speed

relative to the sea surface (i.e. from vector winds minus

vector currents). The advantage of satellite scatterometers

is that they directly provide an estimate of stress at the

ocean surface, and hence naturally account for the effect of

currents on wind stress (Bentamy et al. 2003; Chelton and

Freilich. 2005).

2.2 Global tropical moored buoy array

The Global Tropical Moored Buoy Array (McPhaden et al.

2010, see Figure 1 for mooring locations) is a multi-

national effort providing surface meteorological and sub-

surface oceanic near-real time data for research and

applications. It has three components, namely TAO/TRI-

TON in the tropical Pacific (McPhaden et al. 1998),

PIRATA in the tropical Atlantic (Bourlès et al. 2008) and

RAMA in the tropical Indian Ocean (McPhaden et al.

2009). Hereafter data from the tropical moored array will

be referred to as TPR data (for TAO/TRITON-PIRATA-

RAMA).

Moorings from the TPR network measure wind speed at

about 4 m-height and air temperature and humidity at 3 m-

height. Wind stresses are computed from the telemetered

daily average zonal and meridional winds, using the

COARE v3.0 algorithm, as described in Cronin et al.

(2006), and are available from the TAO Project Ocean-

SITES page (http://www.pmel.noaa.gov/tao/OceanSITES/

index.html). A diurnal gustiness factor, computed at each

site from higher frequency wind data when available, is

used to account for wind variations shorter than 1 day,

similar to the approach described in Cronin et al. (2006).

The TPR wind stresses are computed both from absolute

wind velocity and relative wind velocities when surface

layer (typically at 10 m depth) currents are available from

the moorings. Since surface layer currents are less fre-

quently available than other meteorological parameters, the

TPR relative stress database is not as complete as the

absolute one (only 1/5th of data compared to the absolute

stress database). As demonstrated in the TPR fluxes doc-

umentation (see http://www.pmel.noaa.gov/tao/oceansites/

flux/documentation.html), the TPR absolute and relative

wind stresses are very similar (0.99 correlation, less than

0.006 Nm-2 rmd-difference in wind stress norm over the

entire dataset). Hence, unless otherwise specified, we use

the larger absolute wind stress database in the rest of the

paper.

TPR data undergo stringent quality control procedures

to ensure high accuracy standards (Freitag et al. 1999,

2001; Medavaya et al. 2002; Payne et al. 2002; Lake et al.

2003). We only use daily wind stress data with quality flags

one and two (highest or default quality) when evaluating

other products. Figure 1a shows the total number of valid

data for the entire QuikSCAT record (20 July 1999 to 13

October 2009), the shortest record among the wind stress

products we analyze. TAO/TRITON is the first mooring

array that was initiated (Fig. 1b), and most moorings over

the Pacific Ocean have between 5 and 10 years of daily

data over the QuikSCAT period. The PIRATA array was

the next one to be deployed (Fig. 1b), and most moorings

provide 2–7 years of data. The shortest records are in the

Indian Ocean (Fig. 1b), with no mooring exceeding a total

of 3 years of valid data. The number of high quality daily

observations from the TPR array is quite stable (around 50)

since 1999.

The statistics in the paper are shown for comparison of

5-day averaged TPR and re-analysis data valid at the same

time. This 5-day averaging was introduced to avoid giving

too much weight to very high frequency wind variations.

Note, however, that qualitatively very similar conclusions

are obtained when computing statistics from daily data.

Most statistics presented in this paper were computed over

a common period of 1 August 1999–31 July 2009, which

includes the entire QuikSCAT period, except for a few

months near the beginning and end of the QuikSCAT

record so that we retain exactly 11 full seasonal cycles.

From now on, the ‘‘QuikSCAT period’’ refers to this

11-years long evaluation period.

The overall statistics mentioned above do not distinguish

the ability of various datasets to reproduce observed vari-

ability at different time scales (intraseasonal, seasonal,

interannual variability etc.). We thus also provide statistics

for each of these timescales. The TPR intraseasonal vari-

ability is defined here as 10–90 day filtered data using a

B. Praveen Kumar et al.
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101-point digital filter. This 10–90 day window was chosen

because it includes both MJO timescales (most energetic

between *20 and 80 days, e.g., Wheeler and Hendon 2004)

and westerly wind bursts, which play an important role in El

Niño onset, and have typical durations of 10–20 days (e.g.,

Lengaigne et al. 2004). This procedure causes *50 days of

data to be lost on both ends of any segment of uninterrupted

data. We computed the TPR mooring seasonal cycle by

fitting the first 3 harmonics of the annual cycle (365, 182.5

and 121.7 days) to any mooring with more than 5 years of

data. The interannual anomalies are defined as 90-day low

passed filtered differences between TPR original data and

the fitted seasonal cycle (data are also lost on both sides of

any segment of data due to filtering). We provide statistics

for intraseasonal/seasonal/interannual variability only for

those moorings with more than 1/4/7 years of valid data.

This means that, while we can evaluate intraseasonal vari-

ations in the three tropical oceans, we can only evaluate the

mean seasonal cycle in the Atlantic and Pacific, and inter-

annual variability in the Pacific.

While they provide valuable data against which to

compare re-analyses, TPR data do not provide a fully

independent validation. The TPR data are assimilated in

most of the re-analysis products. We will hence talk about

‘‘evaluation’’ when comparing various datasets to the

dependent TPR data, and about ‘‘validation’’ when using

the independent OceanSITES dataset discussed below.

2.3 Independent validation data sets

Since comparison with TPR observations provides only

partially independent evaluation, we also use data from five

mooring locations collected over the last two decades by

Woods Hole Oceanographic Institution (WHOI). These

datasets are withheld from operational data streams and hence

provide a completely independent dataset for re-analyses

validation purposes. The five moorings are from: Arabian Sea

experiment (Arabian Sea Mixed Layer Dynamics Experi-

ment; Weller et al. 1998), COARE experiment (Coupled

Ocean–Atmosphere Response Experiment; Webster and

Lukas 1992), WHOTS experiment (WHOI Hawaii Ocean

Time series Station Experiment; Plueddemann et al. 2006;

Whelan et al. 2007), Stratus experiment (Colbo and Weller

2007) and the Subduction experiment (Brink et al. 1995).

These locations are shown as black asterisks in Fig. 1.

These moorings provide high quality, hourly meteoro-

logical and oceanographic data over periods ranging from a

few months to a few years. We use these data to produce

hourly time series of wind stresses using COARE v3.0

(Fairall et al. 1996, 2003) algorithm. We apply no gustiness

correction other than the one built in the COARE v3.0

algorithm in this computation, and obtain daily wind

stresses from the hourly values. Note that, we neglected

surface currents (which are not always available) while

computing wind stresses at these moorings.

Fig. 1 a Total length of valid

(quality flag 1 or 2) wind stress

estimates, in years, over the

QuikSCAT period (1st August

1999 to 31st July 2009) at TPR

(TAO-TRITON/PIRATA/

RAMA) sites. Only mooring

locations with more than

180 days of high quality data

are shown here. Black asterisks
indicate locations of

independent OceanSITES

validations sites. b Total

number of high quality wind

stress estimates available from

the TPR array per day. The

black, red and blue lines in

bottom panel represent the

period over which data are

available from TAO/TRITON,

PIRATA and RAMA

respectively
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3 The TropFlux wind stress product

In this section, we first present the methodology for com-

puting TropFlux momentum fluxes. Since those rely

heavily upon ERA-I data, we then present a comparison of

TropFlux and ERA-I to TPR data, to investigate the added

value of TropFlux.

3.1 Estimation method

The TropFlux project aims at producing high quality daily,

timely heat and momentum fluxes over the tropical oceans.

The companion paper by Praveen Kumar et al. (2012)

describes the development of TropFlux heat fluxes and

shows that, together with OAFlux heat fluxes (Yu et al.

2007), it compares best to TPR and OceanSITES data. In

this section, we present the methodology of TropFlux wind

stress computation, largely derived from Praveen Kumar

et al. (2012). TropFlux wind stresses are available at

1� 9 1�, daily resolution within 30�S–30�N from 1979 to

almost near real time from http://www.locean-ipsl.upmc.fr/

tropflux or http://www.nio.org.

We use the strategy of Cronin et al. (2006) for com-

puting wind stresses:

s ¼ qaCds2 ð1Þ

s ¼ w2 þ w2
g

� �1=2

ð2Þ

where s is the estimated daily wind stress magnitude, qa

surface air density, Cd the drag coefficient computed by the

COARE v3.0 algorithm (as a function of sea surface

temperature, 2 m-air temperature and humidity, 10 m-

wind), w the daily-average wind speed and wg a

climatological diurnal gustiness. The climatological

gustiness wg is calculated following Praveen Kumar et al.

(2012) as a function of long term-mean SST, with the mean

relation between gustiness and SST derived from the

gustiness at each TPR site computed as in Cronin et al.

(2006). Following the TPR methodology, the zonal and

meridional components of momentum flux are obtained as:

sx ¼ s u=sð Þ ð3Þ
sy ¼ s v=sð Þ ð4Þ

where u and v are the 10 m-wind daily average zonal and

meridional components.

The basic input variables necessary to compute wind

stresses using this strategy are hence the 2 m-air temper-

ature and humidity, 10 m-wind and SST. Detailed evalu-

ation of these variables against TPR observations suggests

that ERA-I performs better than other sources of data but

with some caveats such as systematic biases and reduced

variability (see Figure 3 of Praveen Kumar et al. 2012). We

hence use here the same bias and amplitude correction

strategy as in Praveen Kumar et al. (2012). Briefly, all

ERA-I variables are corrected from a spatially homogenous

long-term bias estimated from TPR data, except tempera-

ture for which a spatially dependent bias is applied as a

function of climatological air temperature. All variables are

also multiplied by a constant coefficient fitted on TPR

data. For wind speed, the correction is obtained as wc =

[1.11w0 ? (wm ? 0.28)] with units in ms-1, where wm is the

long term mean and w0 is the anomaly with respect to long

term mean. We use this corrected wind speed to compute

s from Eq. 2, and then use this s in Eqs. (1), (3) and (4).

As indicated by Eqs. (1) or (2), we use absolute winds

when computing surface wind stresses, and hence do not

account for the effect of surface currents. There are two

additional options to account for the effect of surface

waves on the wind stress estimate in Fairall et al. (2003)

but we did not use them in the current TropFlux wind stress

estimates. We will discuss the effect of those approxima-

tions in the Sect. 5.

3.2 TropFlux versus ERA-I wind stresses

TropFlux momentum fluxes are largely derived from ERA-

I basic variables. In this subsection, we compare TropFlux

and ERA-I to TPR data in order to evaluate the added value

of the TropFlux product. We show statistics for the wind

stress modulus, but the same conclusions can be drawn for

the zonal and meridional components (not shown).

TropFlux differs from ERA-I momentum fluxes in the

following ways:

1. ERA-I momentum fluxes are retrieved from forecast

average wind-stress whereas TropFlux stresses are

computed from the analyzed winds (and 2 m temper-

ature and humidity) using a bulk formula. The

boundary layer scheme used in ERA-I has a formu-

lation in essence very similar to the COARE v3.0

algorithm (A. Beljaars, personal communication,

2012), so that this part of the difference should be

dominated by differences in analyzed/forecast wind

speed, more than the Cd formulation in Eq. (1).

2. Analyzed ERA-I variables are bias and amplitude

corrected before fluxes are computed.

3. We apply a gustiness correction to account for

unresolved subdiurnal wind variations.

In order to evaluate separately the influence of 1–3,

Fig. 2 shows TPR evaluation statistics for the extracted

ERA-I wind stresses (ERA-I), for wind stresses computed

from the analyzed winds (ANA), from the analyzed winds

with amplitude and bias correction (COR), from the ana-

lyzed winds with gustiness applied (GUST) and for Trop-

Flux (see figure caption for details).
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ERA-I wind stresses display very good phase agreement

with TPR data (0.93 correlation, Fig. 2a) and negligible

mean bias (Fig. 2d) but underestimate variability by*10 %

(Fig. 2c). Re-computing wind stresses from the analysis

rather than the forecasts slightly improves the phase agree-

ment, but further diminishes the amplitude of wind stress

variability, and results in a negative wind stress bias.

Applying the gustiness correction reduces the mean bias,

down to *7 % of the mean TPR value. Applying the wind

correction reduces both the bias and improves the variability

amplitude. Applying both the gustiness and wind correction

together results in both a weak positive bias and amplitude of

variability close to TPR data. Note that applying the gusti-

ness does not clearly improve TropFlux stresses compared to

COR. However, the same approach resulted in a notable

improvement in the mean net heat flux bias values in Prav-

een Kumar et al. (2012). Hence for consistency, we keep the

same approach for the wind stress computation here.

While TropFlux is marginally better than ERA-I in terms

of its correlation and amplitude ratio to TPR stresses, its rms-

error is 17 % smaller than that of ERA-I (Fig. 2b). While

Fig. 2 provides an assessment of the overall improvement

brought by TropFlux over the entire TPR array, Fig. 3 pro-

vides a systematic comparison of TropFlux and ERA-I

evaluation statistics at each TPR mooring (and at each

independent OceanSITES mooring). TropFlux corrections

have a positive impact on the correlation and rms-error to

mooring data at almost all sites (Fig. 3a and d). The

amplitude of the TropFlux wind stress variability is closer to

mooring data at 61 sites out of 90 (Fig. 3c). The mean bias is

reduced at 47 sites out of 90 (Fig. 3d), with TropFlux having

a tendency to increase the bias in western Pacific.

The TropFlux approach is hence successful in adding

value to ERA-I wind stresses. The improvement of Trop-

Flux wind-stresses against ERA-I is however not as sig-

nificant as the improvement we obtained on net heat fluxes

(Praveen Kumar et al. 2012) mainly because ERA-I wind

stresses were already very good, especially in terms of

phase agreement and mean bias.

4 Evaluation of the stress products

In this section, we evaluate NCEP, NCEP2, ERA-I, Trop-

Flux and QuikSCAT wind stresses from various sources

against TPR mooring buoy observations. We then provide a

completely independent validation against observations

from five OceanSITES mooring locations. We discuss dif-

ferences in climatological wind stress, before focusing on a

dynamically important region: the equatorial band.

4.1 Evaluation against TPR data

Figure 4 shows overall statistics for the comparison of

various products against TPR wind stress data. These sta-

tistics are evaluated over 1 August 1999–31 July 2009, the

Fig. 2 Bar diagrams showing evaluation of 5-day average wind stress

magnitude from different products to those computed from TPR (TAO-

PIRATA-RAMA) moored buoy arrays. Statistics are computed at each

site with more than 180 days of high quality data over QuikSCAT

period and then averaged over the whole TPR array. Statistics from

ERA-I stresses are shown in yellow. The other colors indicate the

various steps in the TropFlux wind stresses computation: (see text for

details). The stresses recomputed from analyzed ERA-I parameters

(ANA) are shown in pink. Stresses recomputed with a gustiness

correction (GUST) are shown in salmon. Stresses recomputed with a

bias and amplitude correction (COR) are shown in light blue. TropFlux

is shown in purple. The percentages in d correspond to percentage of

deviation from the mean TPR value (0.06 Nm-2). These statistics are

computed against 182,553 high quality daily TPR observations
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longest common period with QuikSCAT. We show statis-

tics for the wind stress magnitude, but statistics for zonal

and meridional components display very similar features

(the only exception is that QuikSCAT meridional wind

stress component is generally more accurate than the zonal

component). NCEP and QuikSCAT display the largest bias

in terms of mean state (Fig. 4b) and std ratio (Fig. 4c) with

opposite tendencies. NCEP underestimates the amplitude

of TPR wind stress variability by 24 % while QuikSCAT

overestimates it by 17 %. NCEP also tends to display a

strong negative mean bias (19 % of the mean TPR value),

while QuikSCAT displays a strong positive bias (28 % of

the mean TPR value). These results are generally consistent

with previous studies discussing NCEP (Josey et al. 2002;

Meissner et al. 2001) and QuikSCAT accuracy (e.g.,

Satheesan et al. 2007; Jiang et al. 2005). In contrast,

NCEP2 and ERA-I capture the amplitude of wind stress

variability better along with its mean value. ERA-I how-

ever displays a far better phase agreement (0.93 correla-

tion) than NCEP and NCEP2 (0.83).

Figure 4 hence illustrates that ERA-I data is overall the

best re-analysis product. Despite this enviable property,

ERA-I still underestimates the variability by about 9 %

(Fig. 4c). This supports the choices we made in Praveen

Kumar et al. (2012): 1) select ERA-I as TropFlux input

data; 2) but apply a bias and amplitude correction. The

TropFlux dataset captures the variability remarkably well

with the highest correlation/lowest-rms difference to TPR

data (0.95/0.01 Nm-2). It has a weak mean bias (*2 % of

the mean TPR data), and captures the amplitude fairly well

(*5 % underestimation of the variability).

Statistics in Fig. 4 provide an overall evaluation of

TropFlux for all TPR sites taken collectively. Figure 5

allows a more regional view. The color of the marker gives

the correlation and rms-difference of TropFlux to TPR

data. Square markers indicate locations where TropFlux

outperforms all other products (i.e. highest correlation for

upper panels and lowest rms-difference for lower panels).

TropFlux displays the highest correlation and the lowest

rms-difference to TPR data at most sites, both for zonal and

meridional wind stresses. This analysis suggests that

TropFlux not only displays the best overall agreement with

TPR data, but also generally agrees best at individual

locations.

Fig. 3 Scatterplot of evaluation

statistics (over the QuikSCAT

period) of TropFlux (y-axis)

against ERA-I (x-axis) to TPR

(black diamonds show statistics

at each site) and OceanSITES

(red circles show statistics at

each site) mooring data. The

a shows correlation, b shows

mean bias at each mooring site,

c shows the standard deviation

ratio and d the root mean square

difference. The grey shading on

the plot delineates the sites

where TropFlux is improved

with respect to ERA-I for a

given statistic
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The overall correlation of net heat flux to TPR data ranges

from 0.54 (NCEP and NCEP2) to 0.87 (TropFlux) (Praveen

Kumar et al. 2012). Our results clearly show that the

agreement of wind stress products to TPR data is generally

better than that for net heat flux, with correlations ranging

from 0.82 (NCEP2 and QuikSCAT) to 0.95 (TropFlux).

4.2 Comparison of TropFlux and QuikSCAT products

The evaluation presented above is quite local in space. In

order to provide an assessment in the entire tropical band,

background colors in Fig. 5 show correlations and rms-

differences of TropFlux to QuikSCAT wind stresses, over

Fig. 4 Bar diagrams showing

evaluation of 5-day average

wind stress magnitude from

different products to those

computed from TPR (TAO-

PIRATA-RAMA) moored buoy

arrays. Statistics are computed

at each site with more than

180 days of high quality data

over QuikSCAT period and then

averaged over the whole TPR

array. NCEP is shown in blue,

NCEP2 in red, ERA-I in yellow,

TropFlux in purple, and

QuikSCAT in light purple. The

percentages in d correspond to

percent of deviation from the

mean TPR value (0.06 Nm-2).

These statistics are computed

against 182,553 high quality

daily TPR observations

Fig. 5 Maps of correlation (a, b) and root mean square differences

(c, d) between TropFlux and QuikSCAT zonal (a, c) and meridional

(b, d) wind stresses. The statistics are computed over the whole

QuikSCAT period. The statistics of the comparison to TPR mooring

is plotted with the same color code with a symbol at each site. A

square is used to indicate TPR site whenever the evaluation statistic

of the TropFlux product is the best (i.e. highest correlation, lowest

rms-difference) among NCEP, NCEP2, ERA-I and QuikSCAT; a

diamond is used otherwise. TropFlux displays the highest correlation

to TPR data for zonal wind stress at 84 sites out of 90 locations (66

out of 90 for meridional wind stress). It has the lowest rms-difference

at 73 sites for zonal wind stress (71 for meridional wind stress)

TropFlux wind stresses over the tropical oceans

123



the QuikSCAT period. While QuikSCAT is not a direct

measurement (and relies on inversion of a backscatter

signal), its high quality has been underlined many times

(e.g., Figure 3 in Praveen Kumar et al. 2012, shows that

QuikSCAT winds, despite some overestimation, generally

compare well to TPR data).

Left panels of Fig. 5 show a strong disagreement of

TropFlux and QuikSCAT zonal wind stresses along Inter-

tropical Convergence Zones (ITCZ) of the three tropical

oceans, and to a lesser extent in the South Pacific Conver-

gence Zone (SPCZ). At those locations, comparison with

TPR data display much more favourable statistics for

TropFlux (markers on Fig. 5a and c). As already mentioned,

numerous studies already illustrate the inability of Quik-

SCAT to satisfactorily capture wind in rainy regions (Milliff

et al. 2004; Gille 2005; Bentamy et al. 2012) due to back-

scatter of the radar signal by rain drops in the atmospheric

column. Other authors (Bentamy et al. 2003; Chelton and

Freilich 2005) however argue that scatterometers have the

advantage of directly providing an estimate of stress at the

ocean surface, hence naturally accounting for the influence

of ocean currents on surface stress. We thus need to evaluate

whether differences between TropFlux and QuikSCAT in

Fig. 5 are the results of rainfall bias in the QuikSCAT

product or due to the stationary ocean assumption in the other

products, including for TPR at sites that do not carry near-

surface current meters. To that end, Fig. 6 shows a scatter-

plot of the rms-difference (mean, median and quartile val-

ues) between TropFlux/QuikSCAT wind stresses and TPR

estimates, as a function of the TPR-measured rain rate (Serra

et al. 2001) and near-surface current speed. For this plot we

used TPR wind stress estimates that account for the effect of

surface currents (rather than those based on absolute wind

speed alone). The QuikSCAT and TropFlux differences with

those TPR wind stress were then binned depending on the

TPR-measured value of the rain rate (Fig. 6a) or current

speed (Fig. 6b). The bin size was defined as 1/2 of the overall

standard deviation for both rain and currents.

TropFlux wind stress errors display hardly any depen-

dence on either rain rate (Fig. 6a) or surface currents

(Fig. 6b). This indicates that rain or surface currents do not

contribute strongly to TropFlux wind stress errors. On the

other hand, QuikSCAT wind stress rms-error clearly

increases with rain-rates, while this increase is much less

obvious as a function of current speed. This is a very clear

indication that QuikSCAT differences with mooring-esti-

mated stresses are largely the result of contamination by

rainfall, not of the effect of surface currents, consistent

with the recent results of Bentamy et al. (2012). In their

study, Bentamy et al. (2012) demonstrated that the overall

error in QuikSCAT wind retrievals diminishes when a

stricter flagging of rain events is applied. These caveats for

QuikSCAT hence explain its lower quality in heavy rain

regions, when compared with other products.

In most rain-free regions, QuikSCAT and TropFlux

wind stresses generally agree reasonably well (with cor-

relations exceeding 0.8 and rms-differences generally

below 0.03 Nm-2; Fig. 5). This result does not indicate that

TropFlux is better or worse than QuikSCAT in these areas,

but that the two products are consistent with no obvious

flaws away from the area coved by TPR moorings.

4.3 Independent validation to OceanSITES data

As we mentioned in Sect. 2.3, TPR observations do not

provide a completely independent validation because

(a) TPR observations are assimilated in various re-analyses

and (b) TPR observations are used for deriving ad-hoc

Fig. 6 Average (thick curves) and median (thin curves) root mean

square difference between QuikSCAT (black/grey) and TropFlux

(red) and TPR mooring wind stresses, as a function of TPR a rain

rates and b current speed. The shading delineates the 1st and 3rd

quartiles of the root-mean-square difference. In order to obtain these

statistics, the QuikSCAT and TropFlux differences with TPR wind

stress data have been binned depending on the TPR-measured value

of the rain rate (a) or current speed (b), when both were available. The

bin size was taken as 1/2 of the overall standard deviation of rain

(a) and currents (b). The TPR wind stress estimates used in this plot

account for the effect of surface current on wind stress
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corrections while producing the TropFlux product. Data

from the OceanSITES network are however neither used in

re-analyses nor in the TropFlux generation procedure and

hence provide an independent validation. Figure 7 sum-

marizes the validation of wind stress magnitudes at the 5

mooring sites described in Sect. 2.3 (note that separate

validation of the zonal and meridional components gener-

ally lead to the same conclusions).

The validation with independent data suggests that:

(a) NCEP and NCEP2 generally underestimate mean wind

stress and its variability (except at the stratus site), while

other products have more differentiated behaviours;

(b) TropFlux has 4 times out of 5 the highest correlation

and 3 times out of 5 the lowest rms-difference, (c) there is

generally (4 times out of 5) a neutral effect or improvement

of TropFlux relative to ERA-I although this is not as clear

as when gauged against TPR (also see Fig. 4). But overall,

this validation relative to independent data suggests that

TropFlux (and ERA-I) products generally provide the most

accurate wind stress estimates in the tropics.

4.4 Differences in mean state

In this subsection, we briefly discuss climatological dif-

ferences in wind stress. Figure 8 shows the long-term

average wind stress for TropFlux (panel a), and the dif-

ference between all the other products and TropFlux

(panels b–e). As shown in Fig. 8a, easterly winds clearly

prevail in the Atlantic, Pacific and Southern Indian Oceans.

The western Pacific and Indian Ocean warm-pool exhibit

weak long-term mean wind stress. The Northern Indian

Ocean annual average clearly exhibits the mark of the

Indian Monsoon flow, with a strong Somali jet over the

Arabian Sea. ERA-I and TropFlux wind stress climatolo-

gies are very similar. In contrast, QuikSCAT tends to be

much stronger than TropFlux everywhere, especially in the

Pacific ITCZ. NCEP tends to be weaker in the 15�N–15�S

band and NCEP2 stronger, except in the equatorial Pacific.

Wind stress curl is an important parameter for the ocean

forcing outside of the equatorial waveguide. Contrasts

between wind stress curl climatology amongst products are

illustrated for the central Pacific in Fig. 9. In general, all

display strong curl towards the center of subtropical gyres

(between 20� and 30� of latitude), and slightly negative

values between the equator and 10�S. All products display

a maximum curl around 8–10�N associated with the

boundary between the North Equatorial Current and North

Equatorial Counter Current but with large discrepancies in

both structure and amplitude. QuikSCAT has a double

maximum structure, unlike any other products, probably

related to rain contamination under the ITCZ (as discussed

in Sect. 4.2) while NCEP maximum is much broader. The

structure of maximum curl agrees reasonably well for

NCEP2, TropFlux and ERA-I, with larger values for

NCEP2 (0.8 10-7 instead of *0.5 10-7 Pa m-1).

Within the equatorial waveguide, the important

dynamical quantity is zonal wind stress, rather than curl.

The slope of the thermocline in the Pacific and Atlantic

oceans is indeed to the first order in balance with the cli-

matological zonal wind stress (e.g., McCreary 1981a, b).

TPR data allows us to establish which products have the

most realistic long-term estimate of wind stresses (Fig. 10)

along the equatorial band. NCEP climatological equatorial

wind stresses are too weak everywhere in the tropical band.

Fig. 7 Bar diagrams showing

validation of daily wind stresses

from different sources against

independent data from five

moorings. Blue color denotes

NCEP, red denotes NCEP2,

yellow denotes ERA-I, purple
denotes TropFlux and violet

denotes QuikSCAT. The length

of available data at each

location is described in the text.
The numbers at the bottom of

d represents the number of

observations used (in years) for

the validation. Note that we

have averaged the statistics

from the three locations at the

Subduction site
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NCEP2 climatological equatorial wind stresses are too

weak in the Pacific Ocean, but otherwise in close agree-

ment with TPR. QuikSCAT climatological equatorial zonal

wind stresses are overestimated by a large amount in the

Indian Ocean and western Atlantic Ocean, but are generally

similar to TPR in the Pacific. ERA-I and TropFlux display

the best agreement with the TPR long-term average zonal

equatorial wind stresses.

Fig. 8 a Long term

(2000–2008) annual mean wind

stress vectors (arrows) and

magnitude (shading) from

TropFlux. Differences between

the long term mean wind stress

magnitudes from b ERA-I, c the

QuikSCAT, d NCEP, e NCEP2

and TropFlux
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4.5 Intraseasonal, seasonal and interannual variability

along the equatorial band

Zonal wind stress variations induce very clear ocean

response at several timescales in the equatorial waveguide.

On interannual timescales, this response is important

dynamics in the Pacific Ocean for El Niño (e.g., Boulanger

and Menkes 1999; Lengaigne et al. 2006), and in the Indian

Ocean for the Indian Ocean Dipole (e.g., Le Blanc and

Boulanger 2001). On seasonal time-scales, the Indian

Ocean displays a very energetic response to zonal wind

stress, with very clear spring and fall jets (Wyrtki 1973). At

intraseasonal timescale, there is also a clear modulation of

equatorial currents and sea level in the Indian Ocean (e.g.,

Han et al. 2001; Sengupta et al. 2007; Nagura and

McPhaden 2012). In the Pacific Ocean, intraseasonal wind

variations induce a clear oceanic response (e.g., Cravatte

et al. 2003), and westerly wind bursts (WWBs) in partic-

ular can contribute to the western displacement of the

warm pool during the El Niño onset (Kessler et al. 1995;

Lengaigne et al. 2002, 2004). In this section, we evaluate

specifically zonal wind stresses to TPR data at each of

those timescales. We define intraseasonal timescales as

10–90 day filtered data in order to retain both the influence

of the MJO and WWBs. The seasonal cycle is defined by

fitting three harmonics, and the interannual variability is

defined as 90-day low-passed differences from the raw

signal and the seasonal cycle.

Figure 11 shows intraseasonal statistics of zonal wind

stress products along the entire equatorial strip. Observed

zonal wind intraseasonal variability is strongest in the

eastern Indian Ocean and in the western and Central Pacific

(Fig. 11b), while it is comparatively small in the equatorial

Atlantic. At this timescale, ERA-I and TropFlux products

display the best agreement with TPR variability at almost

all locations, both in terms of phase (with correlations[0.9

Fig. 9 Zonal average of wind stress curl in tropical Pacific (averaged

between the dateline and 100�W) from different sources over

2000–2008

Fig. 10 a Bar diagrams of

comparison between long-term

mean zonal wind stress values

from the TPR array with other

products along the equator over

the QuikSCAT period. The

locations are mentioned in the

figure and numbers in brackets
correspond to the total number

of available observations over

the QuikSCAT period for

evaluation (in years). b The

mean zonal stress bias (product-

TPR values) along the equator.

TPR locations with a minimum

of 365 valid observations over

the QuikSCAT period are used

to calculate the mean values
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in the region of significant intraseasonal zonal wind stress

variability, versus 0.8 at best for other products; Fig. 11a)

and amplitude (Fig. 11b). Indeed, QuikSCAT strongly

overestimates intraseasonal variability in the Indian Ocean

and western Pacific. Both NCEP re-analyses underestimate

zonal wind stress variability in the western Pacific (by *20

to 30 %), but only NCEP re-analysis underestimates in-

traseasonal zonal wind stress variability in the Indian

Ocean. The improvement of TropFlux compared to ERA-I,

although modest, is systematic in terms of phase and even

clearer in terms of amplitude: the TropFlux and TPR in-

traseasonal wind stress amplitudes match at most locations.

Westerly wind bursts in late 1996 and 1997 were very

important in the 1997–1998 El Niño onset and develop-

ment (e.g., McPhaden 1999; Vialard et al. 2001; Lengaigne

et al. 2002, 2003). Figure 12 shows 10–90 day filtered

wind stresses from TPR data and other products (except

QuikSCAT, which was not available yet) at 156�E and

165�E in late 1996 and 1997. These longitudes were chosen

because they exhibit some of the strongest wind stress

variability along the equator. Only TropFlux captures the

full magnitude (with slight overestimation) of WWBs

during this period (Fig. 12). While the March 1997 WWB

is reasonably well captured by most products at 165�E

(Fig. 12b), the December 1996 WWB (Fig. 12a) and

April–May 1997 WWB (Fig. 12b) are strongly underesti-

mated by the NCEP and NCEP2 re-analyses (by 70 %) and

to lesser extend by ERA-I (by 40 %). In contrast, these

WWBs are of comparable magnitude to TAO/Triton data

in TropFlux.

Figure 13 shows 10–90 day filtered wind stresses in the

eastern Indian Ocean (0�, 90�E). In November 2007 and

April 2008, all products show *20 days long westerly

anomalies (overestimated by NCEP2 and QuikSCAT),

which force a strong intraseasonal pulse of the Wyrtki jet

(e.g., Sengupta et al. 2007). QuikSCAT sometimes generate

spurious variability, probably due to rainfall contamination

(e.g., a very strong spurious burst in December 2007, an

overestimated westerly wind event in July 2008, etc.).

Various products display non-negligible differences,

mainly in terms of amplitude of the seasonal cycle along

the equatorial band (Fig. 14). None of the products match

the amplitude of the observed seasonal cycle in the western

and Central Pacific; overall amplitude underestimation is

*20 to 30 %, except for QuikSCAT which strongly

overestimates the seasonal cycle in the western Pacific

Warm Pool. The phase agreement with TPR data is gen-

erally very good (correlation [0.9, except for QuikSCAT

and NCEP2 at a few locations). TropFlux and ERA-I are

almost always the best products, with TropFlux slightly

improving ERA-I seasonal wind stresses.

Figure 15 shows zonal wind stress statistics on inter-

annual time scales at all TAO/TRITON sites along the

equator. Largest interannual observed zonal wind stress

variability is found over the warm pool between 156�E and

180�E. Over this region, most products display quite good

Fig. 11 Bar diagrams showing

a correlation and b standard

deviation ratio of intraseasonal

(10–90 days filtered) zonal wind

stress from various products

compared to the TPR

observations along the equator.

In b, the observed 10–90 day

standard deviation from TPR

data is shown as a grey shading
in the background (scale on the

right of the plot). Different

products are shown in different
colors. Statistics are calculated

over all the available valid data

from TPR array over

1990–2010 period except for

QuikSCAT. For QuikSCAT

statistics are calculated over the

entire QuikSCAT period. Note

that similar results are obtained

for other products when

statistics are calculated over

QuikSCAT period
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phase agreement with TPR zonal stresses (correlation

[0.9). Most products, except TropFlux and QuikSCAT,

tend to underestimate the interannual variability. TropFlux

and ERA-I zonal wind stresses have the best interannual

variability, with TropFlux displaying better amplitude

agreement with TPR. In summary, statistics computed for

the entire TPR network and for both components of the

wind stresses (not shown) indicate that TropFlux and ERA-

I display the best agreement with TPR data for the three

timescales (intraseasonal/seasonal/interannual) within the

entire tropical region.

4.6 Synthesis and comparison with heat fluxes

We define the following metric, e, in order to measure the

level of agreement between various products Xi
j (where i

designates one of the 5 wind stress products NCEP,

NCEP2, ERA-I, TropFlux and QuikSCAT; j designates the

5-days time step):

e ¼
1
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j

P
i

X j
i�X j� X½ �ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j
X j� X½ �ð Þ2

q with X j ¼ 1
I

P
i

X j
i the ‘‘ensem-

ble mean’’ of the I available products and X½ � ¼ 1
IJ

P
j

P
i X j

i

the ensemble average long term mean. The denominator of

this expression is the standard deviation of the ensemble

average of the 5 products and the numerator is the ‘‘ensemble

spread’’, i.e. a root mean square measure of the spread

around the ensemble mean X j. The ‘‘relative spread’’ e is a

dimensionless quantity that expresses the typical spread of

the products relative to the consensus value provided by the

average of all products, and normalized by the variability

of this consensus value. Note that this quantity does not

measure systematics biases, only differences in variability.

We already noted that the agreement between various

wind stress products and TPR data is in general better than

for net heat fluxes discussed in Praveen Kumar et al. (2012)

(correlations of 0.8–0.95 for wind stresses against 0.5–0.85

for heat fluxes). Figure 16 allows a quantitative comparison

Fig. 12 Intraseasonally filtered

(10–90 days) zonal wind stress

from different products at

a 0�N156�E and b 0�N165�E.

The mooring timeseries is

shown in black, TropFlux in

purple, ERA-I in yellow,

QuikSCAT in violet, NCEP in

blue and NCEP2 in red

Fig. 13 Intraseasonally filtered

(10–90 days) zonal wind stress

from different products at

0�N90�E. The mooring

timeseries is shown in black,

TropFlux in purple, ERA-I in

yellow, QuikSCAT in violet,
NCEP in blue and NCEP2 in

red
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of the ‘‘relative spread’’ e of the 5 wind stress products in

this study with the ‘‘relative spread’’ of the 5 net heat flux

products in Praveen Kumar et al. (2012). Since the defini-

tion of this measure is relative to the amplitude of vari-

ability, both wind stress and net heat fluxes display stronger

spread of values near the equator, where air-sea momentum

and heat fluxes vary less, than toward mid latitudes

(Fig. 16). Because of previously discussed issues related to

the wind stress retrieval in intense rainfall regions, Quik-

SCAT is often an outlier under the ITCZ in the Pacific and

Atlantic Oceans, and in the western Pacific and eastern

Indian Ocean warm pool. As a result, Fig. 16a shows a large

Fig. 14 Bar diagrams showing

a correlation and b standard

deviation ratio of the long-term

mean seasonal cycle zonal wind

stress from various products

compared to the TPR

observations along the equator.

In b, standard deviation of the

observed seasonal cycle from

TPR data is shown as a grey
shading in the background

(scale on the right of the plot).

Different products are shown in

different colors. Statistics are

calculated over all the available

valid data from TPR array over

1990–2010 period except for

QuikSCAT. Locations with a

minimum of 4 years of TPR

data are used for this analysis.

For QuikSCAT, statistics are

calculated over the entire

QuikSCAT period. Note that

similar results are obtained for

other products when statistics

are calculated over QuikSCAT

period

Fig. 15 Bar diagrams showing

a correlation and b standard

deviation ratio of interannual

zonal wind stress from various

products compared to the TPR

observations along the equator.

In b, standard deviation of the

observed interannual stresses

from TPR data is shown as a

grey shading in the background

(scale on the right of the plot).

Different products are shown in

different colors. Statistics are

calculated over all the available

valid data from TPR array over

1990–2010 period except for

QuikSCAT. Locations with a

minimum of 7 years of high

quality TPR data are used for

this statistics. For QuikSCAT

statistics are calculated over the

entire QuikSCAT period. Note

that similar results are obtained

for other products when

statistics are calculated over

QuikSCAT period
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spread under intense rainfall regions. This spread is strongly

reduced when QuikSCAT is excluded from the spread

computation (compare Fig. 16a, b; no equivalent reduction

in spread is obtained when any other product is excluded).

The normalized wind stress spread in Fig. 16b is overall

clearly smaller than the spread of net heat fluxes (Fig. 16c,

the zonal average flux spread is *0.85 at the equator and

*0.4 poleward of 15� versus *0.55 and 0.3, respectively,

for wind stress). This indicates that wind stress products

agree better amongst themselves than net heat flux products.

We will discuss this further in Sect. 5.

5 Summary and discussion

5.1 Summary

This paper is part of our ongoing effort to provide timely

and accurate daily fluxes of heat and momentum over the

global tropical oceans. We presented the TropFlux heat

flux data in Praveen Kumar et al. (2012). Here, we present

TropFlux wind stresses, available at 1� 9 1�, daily reso-

lution within 30�S–30�N from 1979 to almost near real

time, from http://www.locean-ipsl.upmc.fr/tropflux and

http://www.nio.org. Following Praveen Kumar et al.

(2012), TropFlux wind stresses are computed by applying

the COARE v3.0 algorithm to bias and amplitude corrected

ERA-I data. A gustiness correction is also applied to wind

speed on the basis of climatological SST, in order to

account for unresolved (meso-scale, diurnal and subdiur-

nal) wind variations by the ERA-I dataset.

The resulting wind stresses as well as three other timely,

daily re-analyses (ERA-I, NCEP and NCEP2), and the

widely used QuikSCAT 1999–2009 wind stresses, are

evaluated against dependent data from the TAO/TRITON,

PIRATA and RAMA and independent OceanSITES

mooring networks. Wind stress products are more consis-

tent amongst each other than surface heat fluxes,

Fig. 16 Ensemble spread (see

text for details) of a wind stress

magnitude from NCEP, NCEP2,

ERA-I, TropFlux and

QuikSCAT, b wind stress

magnitude from NCEP, NCEP2,

ERA-I and TropFlux and c net

heat flux from NCEP, NCEP2,

ERA-I, OAFlux and TropFlux.

The contours show the standard

deviation of the average of the

products
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suggesting 10 m-winds are better constrained than near-

surface thermodynamical parameters (2 m-humidity and

temperature) and surface downward radiative fluxes.

NCEP, NCEP2 and QuikSCAT wind stresses display

equivalent overall performance relative to TPR data (cor-

relations of 0.81–0.84 and rms-differences of 0.021–0.026

Nm-2). QuikSCAT overestimates wind stresses away from

the equator, while NCEP and NCEP2 underestimate wind

stresses. QuikSCAT zonal wind stress quality is strongly

affected by rain under the ITCZ. Both ERA-I and TropFlux

display the best agreement with in situ data, with correla-

tions [0.93 and rms-differences \0.012 Nm-2. The

TropFlux wind stresses exhibit a small, but consistent

improvement (at various timescales and most locations)

over ERA-I, with an overall 17 % reduction in rms-error.

We further investigate equatorial zonal wind stresses in

detail, owing to their importance for forced ocean dynam-

ical responses. NCEP climatological equatorial wind

stresses are too weak everywhere in the tropical band.

NCEP2 climatological equatorial wind stresses are too

weak in the Pacific Ocean, but otherwise in good agreement

with TPR. QuikSCAT climatological equatorial zonal wind

stresses are overestimated by a large amount in the Indian

Ocean and western Atlantic Ocean, but are generally more

accurate in the Pacific. ERA-I and TropFlux display the best

agreement with the TPR long-term average zonal equatorial

wind stresses. All products tend to underestimate the zonal

wind stress seasonal cycle by *20 % in the western and

central equatorial Pacific. Consistent with the overall sta-

tistics discussed earlier, TropFlux and ERA-I equatorial

zonal wind stresses have clearly the best phase agreement to

TPR data at intraseasonal and interannual timescales (cor-

relation of *0.9 vs. *0.8 at best for any other product),

with TropFlux correcting the *13 % underestimation of

ERA-I variability amplitude at both timescales.

While overall statistics indicate almost identical per-

formances of ERA-I and TropFlux, these two products

display significant differences on an event-to-event basis.

For example, various products display important differ-

ences in reproducing the late 1996 and 1997 westerly wind

bursts that played a key role in the 1997–1998 El Niño

onset and development, with TropFlux displaying the best

agreement to TPR data.

Finally, Table 1 provides a quantitative estimate of the

rms-errors of TropFlux with respect to TPR data: 0.009

Nm-2 for 5-day averaged data, a value that does not vary

strongly depending on the basin. The average root-mean-

square wind stress magnitude at all TPR sites is 0.061

Nm-2 for both TPR and TropFlux. This provides a relative

measure of the uncertainty in the TropFlux wind stress

product: 0.009/0.061, i.e. a 15 % error arising from sam-

pling and observational uncertainties. This number can be

compared with the 5–10 % accuracy of the COARE

algorithm quoted by Fairall et al. (2003). If instrumental

and sampling errors are assumed to be independent from

errors arising from the use of a bulk transfer coefficient, the

typical error on the 5-day averaged TropFlux wind stress

estimates is hence below 20 %, and mostly arises from

wind and sampling uncertainties.

5.2 Discussion and perspectives

This study suffers from the same limitation as that of

Praveen Kumar et al. (2012). First, we use dependent data

from the TPR array extensively and so our evaluation is

more a check on the ability of the various products to fit the

observations than a true independent validation. We do,

however, believe that the most serious issue associated

with the use of these data is the fact that our analysis is

most complete in the well-sampled 10�N–10�S latitude

band best sampled by the TPR array: we trust our evalu-

ation of the various products within this band, but it is

probably less representative of the 10�–30� band.

Another limitation of our study is that we rely on the

TPR wind stress estimates, and hence on the COARE v3.0

algorithm, and the gustiness approach proposed by Cronin

et al. (2006). COARE has been developed specifically for

tropical regions and Fairall et al. (2003) claim a 5–10 %

accuracy of the COARE algorithm for winds up to

20 ms-1. In addition, the gustiness approach proposed by

Cronin et al. (2006) (but applied here over the entire TPR

array) is based on actual climatological differences

between wind speeds estimated from daily averages, and

wind speeds estimated from high frequency (10 min) data.

One of the limitations of our approach, however, is that this

application of the gustiness is climatological, and does not

take into account non-seasonal variations of the convective

and meso-scale variability.

Table 1 Evaluation statistics of TropFlux wind stress magnitude

against high-quality TPR mooring observations over the QuikSCAT

period

Cor Bias (Nm-2) Std ratio rms-error

(Nm-2)

Global (daily) 0.92 0.000 0.93 0.013

Global (5-day) 0.95 0.003 0.95 0.009

Indian ocean 0.97 0.001 0.98 0.008

Pacific ocean 0.94 0.005 0.94 0.010

Atlantic ocean 0.95 0.003 0.95 0.010

The first rows of values are statistics for daily data; the rest are for

5-day smoothed data. Statistical quantities are correlation, TropFlux

minus TPR bias, standard deviation of TropFlux divided by standard

deviation of TPR, and root-mean-square error of TropFlux to the

TPR. In order to obtain estimates of the percentage of accuracy of

pentad TropFlux wind stress estimates, the rms-error should be

divided by the average root-mean-square value of TPR wind stress

magnitude of 0.061 Nm-2 (the value for TropFlux is very close)
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Another possible limitation of our method is that we

neither account for the effect of surface waves nor surface

currents in the computation of the wind stress (surface

waves act mainly by modifying the ocean’s surface

roughness, and surface currents by influencing the relative

speed of air with respect to the sea). Some studies have

pointed out that the effect of currents and waves may not be

negligible for wind stress estimates (e.g., Dawe and

Thompson 2006; Kara et al. 2007). We however feel that

our approximations do not cause large errors in the Trop-

Flux dataset. Regarding the effect of surface currents, the

TPR product accounts for the effect of surface currents

when available and Fig. 6 clearly shows that large observed

surface currents are not a source of large error in TropFlux

compared to TPR. The situation is more difficult regarding

surface waves. We don’t have available in situ wave char-

acteristics estimates at TPR mooring sites to evaluate the

effect of waves from in situ data. Fairall et al. (2003)

however noted that ‘‘the wave stress community lacked

consensus on how to handle waves’’ when estimating wind

stress. Despite those two difficulties, we have two hints that

the effects of waves may not be of first-order importance in

the tropics. First, ERA-I stresses include explicitly the

effect of waves on stress through an interactive wave model,

and ERA-I wind stresses are not very different from Trop-

Flux. Second, the COARE v3.0 algorithm includes two

parameterizations of the effect of waves (Oost et al. 2002;

Yelland and Taylor 1996) as a function of the dominant

wave period (Oost et al. 2002) and of significant wave

height (Yelland and Taylor 1996), both of which we

obtained from the ERA-I re-analysis. Re-computing the

TropFlux product with those two estimates yields differ-

ences that are typically smaller than the differences between

TropFlux and most other products (NCEP, NCEP2, Quik-

SCAT, not shown). We have hence not included these wave

parameterizations in the current TropFlux product, but we

recognize the need for a more thorough investigation of the

effects of surface waves and surface currents in a future

study. While these two effects are generally not large in the

equatorial strip, they may be non negligible in strong sur-

face currents and very strong wind conditions, as, e.g., in the

western Arabian Sea during the monsoon (e.g., Schott and

McCreary. 2001) or in intense tropical storms.

Results from other studies assessing wind stress are

generally consistent with ours. Jiang et al. (2005) compare

various wind speed products with TPR data, and find

consistent results: NCEP and NCEP2 tend to underestimate

wind speed, and QuikSCAT tends to overestimate it away

from the equator. Jiang et al. (2008) compare an ocean

general circulation model forced by NCEP2 and Quik-

SCAT wind stresses. They show an improvement of the

model mean state when QuikSCAT wind stresses are used,

but no discernable improvement of intraseasonal SST and

thermocline depth variations. This last result is qualita-

tively consistent with the results of Fig. 11, which indicate

a comparable correlation of NCEP2 and QuikSCAT to TPR

data at intraseasonal timescale. Meissner et al. (2001) and

Josey et al. (2002) also indicate that NCEP wind stresses

tend to be underestimated in the tropical region. Studies by

Chelton and Freilich (2005), Milliff et al. (2004), Gille

(2005), Bentamy et al. (2012) also point to a tendency of

QuikSCAT to overestimate winds (and wind stresses) and

indicate deficiencies of this dataset in intense rainfall

regions.

Our results outline some issues with the use of Quik-

SCAT wind stress data in rainy regions (where it clearly

appears as an outlier amongst the products, see Figs. 10

and 16). Scatterometer data is still useful though. Many re-

analyses and operational products assimilate scatterometer

data, with appropriate bias correction and flagging of

incorrect data, and this contributes to improving the esti-

mation of surface wind stress (e.g., Chelton et al. 2006),

especially in the many oceanic regions where no other

direct information on surface wind is available. In addition,

the QuikSCAT wind stresses are often of superior quality

to some re-analyses (NCEP and NCEP2) away from rainy

regions. Many studies of ocean dynamical response to wind

stress forcing however use QuikSCAT wind stresses (e.g.,

Sengupta et al. 2007, Nagura and McPhaden 2010a, b;

Cravatte et al. 2007; Jiang et al. 2009, amongst many

others). We note that, for studies of equatorial ocean

dynamics, the ERA-I or TropFlux wind stress forcing are

however more appropriate, because they resolve intrasea-

sonal and interannual variability much better in the

important forcing regions (e.g., the eastern Indian Ocean

and western Pacific), and do not suffer from rainfall con-

tamination as does QuikSCAT.

Our results indicate that wind stresses are generally

better constrained than heat fluxes (less spread amongst

products, and better consistency with mooring data). This

can probably be explained by the fact that wind stress

computation largely relies on 10 m wind estimation (2 m-

temperature and humidity only have a weak impact,

through the drag coefficient computation), which are better

constrained by the observing system than surface thermo-

dynamical parameters. Scatterometers indeed provide

wide-coverage information about surface winds, while

there is no equivalent data for surface humidity and tem-

perature. In addition, wind is also constrained by numerous

pressure measurements through geostrophic balance con-

straints in assimilation systems. As a result, winds suffer

from relatively lower systematic biases than surface tem-

perature and humidity (Praveen Kumar et al. 2012).

Finally, surface radiative fluxes are a strong source of error

in net surface heat fluxes (Praveen Kumar et al. 2012). This

is probably due to the fact that, while assimilation systems
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assimilate Outgoing Longwave Radiation (i.e. longwave

emission at the top of the atmosphere), they do not impose

much constraint on the surface heat budget.

One obvious application of surface heat and wind stress

products is to force ocean models. The current study sug-

gests that for tropical studies, the ERA-I and TropFlux data

provide very high quality wind stresses and, depending on

the particular application, should be preferred to other

possibilities. As far as net heat fluxes are concerned,

Praveen Kumar et al. (2012) however underlined the ERA-

I systematic biases (too strong oceanic heat losses by

*15 Wm-2), and errors in shortwave fluxes (resulting in

an overall correlation to TPR of *0.75 against *0.83 for

TropFlux net heat fluxes). Studies also concerned with

thermodynamical response of the tropical ocean should

hence use TropFlux fluxes, or apply correction strategies

similar to those implemented in the Drakkar Forcing Set

(Brodeau et al. 2010).

The TropFlux surface meteorological parameters, surface

heat fluxes and wind stress data are available on the Trop-

Flux website at http://www.locean-ipsl.upmc.fr/tropflux

from 1979 to nearly the present with daily resolution on a

1� grid. We are currently working to automatically update

TropFlux heat and momentum fluxes so that they are no

more than 4 months delayed from the present. We hope that

our efforts to develop a better heat and momentum flux

product for the tropical oceans will lead to new insights into

tropical ocean–atmosphere interactions and tropical climate

variability.
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