Individual-based modeling of walleye pollock in the southeast Bering Sea
S. Hinckley, B.A. Megrey, A.J. Hermann
Much of the structure of the Individual-Based Model (IBM, Fig 1) will remain the
same as configured for the GOA, in terms of the basic life stage structure.
Progress has been made, however, in extending the model, in adapting parts of
the model to the Bering Sea, and in collecting parameters specific to the
region. The juvenile stage module has been revised and extended based on recent
information on this stage from the Bering Sea. A major extension to the IBM has
been the addition of a mortality component, similar to the "super-individuals"
scheme of Scheffer et al (1995). This component was needed to deal with the
problem of modelling large numbers of individuals without incurring
impractically large computation times. This component adds a variable that
tracks the number of real individuals represented in the model, which is reduced
by daily mortality. This method implies that each of the "floats" which are
tracked through space in the 3D model represent a "cohort" of individuals,
rather than single individuals. Each member of the cohort follows the same
trajectory through space, experiences the same environmental conditions of
temperature, salinity, and food, and has the same growth pattern over time. The
"value" of the float, ie. the number of real individuals represented in the
cohort, is reduced daily by stage-specific mortality rates, which may be either
constant (as presently in the egg stage), or size-based (as in the larval
stage). This represents a "total" mortality. Starvation mortality, which is
calculated by the model based on a critical condition factor, is subtracted from
this total mortality to obtain an estimate of predation mortality.
Parameters specific to the Bering Sea which are being incorporated into the IBM include: (1) spawning times, locations and depths (P. Dell'Arciprete), (2) low-temperature egg development rates (D. Blood), (3) low-temperature larval metabolic rates and Q1 0 (S. Porter), (4) depth distributions of different life stages (A. Kendall, A. Brase, P. Dell'Arciprete, R. Brodeur and M. Wilson (5) bioenergetics and consumption parameters for the juvenile stage (L. Cianelli and R. Brodeur, (6) an algorithm to predict the hours of feeding of juveniles (R. Brodeur, (7) an algorithm to predict the depth of juveniles (M. Wilson).
Scheffer, J, JM Baveco, DL DeAngelis, KA Rose and EH Van Nes. 1995. Super-individuals: a simple solution for modelling large populations on an individual basis. Ecol. Model. 80: 161-170.