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The Bering Sea is characterized by unique bio-optical properties, which cause unsatisfactory performance of glob-
al ocean color algorithms for retrieval of chlorophyll-a (Chl-a). This study evaluates the normalizedwater-leaving
radiance nLw(λ) and Chl-a in the eastern Bering Sea that are derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the satellite Aqua by comparing them to in situ data. MODIS-Aqua ocean color
productswere derived using theNOAAMulti-Sensor Level-1 to Level-2 (MSL12) ocean color data processing sys-
tem. The MODIS-derived nLw(λ) showed good agreement with in situ-measured nLw(λ). The mean ratios be-
tween them for wavelengths 412, 443, 488, and 551 nm ranged from 1.097 to 1.280, with reasonably accurate
blue-green radiance ratios in nLw(λ) that were used as input for deriving Chl-a. However, compared to in situ
data, existing global and regional Chl-a algorithms either overestimate or underestimate Chl-a in the eastern
Bering Sea. Therefore,we propose a newalgorithm for estimating Chl-a using a blended approach thatwas tested
and applied to MODIS-Aqua images. The histogram distributions of MODIS-Aqua-derived and in situ-measured
Chl-a data show that Chl-a data derived using the new algorithm agree reasonably well to in situ measurements.
Annual, seasonal, andmonthly composite nLw(λ) and Chl-a images are produced for the period of 2003 to 2013 in
order to interpret the long-term spatial and temporal patterns of nLw(λ) and Chl-a. The nLw(λ) spectra show
strong spectral dependence on seasonal variability with distinct spatial patterns. Although strong seasonal and
interannual variability has been observed in Chl-a, there is no apparent trend of either increase or decrease in
phytoplankton biomass associated with variability in the physical environment for the 11 years of the
study period.

Published by Elsevier Inc.
1. Introduction

The Bering Sea has been recognized as one of the most productive
continental shelves in the world, supporting half of the US fishery
catch (Overland & Stabeno, 2004; Sigler et al., 2010). High rates of pri-
mary production driven by seasonal sea ice, stratification, and light con-
ditions sustain the abundant benthic biomass and higher trophic levels
(Grebmeier & Cooper, 1995; McRoy, Hansell, Springer, Walsh, &
Whitledge, 1987; Stabeno, Hunt, Napp, & Schumacher, 2006). In recent
years, the Bering Sea is rapidly restructuring its marine environment
(Grebmeier et al., 2006; Hunt et al., 2002; Overland & Stabeno, 2004;
Walsh&McRoy, 1986). Intensive scientific studies have been conducted
in the Bering Sea in recent decades due to its economic importance and
its rich ecosystem that is rapidly changing (McRoy, Hood, Coachman,
Walsh, & Goering, 1986), e.g., Bering Ecosystem Study—Bering Sea Inte-
grated Ecosystem Research Program (BEST—BSIERP) (http://bsierp.
nprb.org). The Bering Sea is characterized by strong seasonality with a
.

physical and biological structure shapedmainly by sea ice concentration
(Overland & Stabeno, 2004; Stabeno, Schumacher, & Ohtani, 1999). Due
to the strong seasonality and associated response of primary producers,
it is challenging to monitor and characterize changes in the Bering Sea
from in situ measurements as well as satellite observations. Most of
the research in the Bering Sea has focused on climatic fluctuations and
its effects on the physical and biological regimes of the Bering Sea
(Mathis et al., 2010; Overland & Stabeno, 2004; Sigler et al., 2010;
Stabeno et al., 2012b). However, some of these impacts still remain am-
biguous. Part of this ambiguity can be ascribed to the fact that even nu-
merous individual ship-borne measurements integrated over large
spatial and temporal scales do not always capture the diversity and
dynamicity of the Bering Sea. In this context, satellite remote sensing
can be an invaluable resource for understanding and monitoring the
rapid changes in the Bering Sea at spatial and temporal scales
unachievable by traditional shipboard in situ observations. Ocean color
measurements from satellites have served as an important tool for
assessing changes in primary productivity in response to climate
(Aiken,Moore, &Hotligan, 1992; Behrenfeld et al., 2001, 2006). However,
satellite Chl-a estimates generally used as inputs to primary productivity

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.03.020&domain=pdf
http://bsierp.nprb.org
http://bsierp.nprb.org
http://dx.doi.org/10.1016/j.rse.2015.03.020
mailto:Menghua.Wang@noaa.gov
Journal logo
http://dx.doi.org/10.1016/j.rse.2015.03.020
http://www.sciencedirect.com/science/journal/00344257


241P. Naik et al. / Remote Sensing of Environment 163 (2015) 240–252
algorithms (Behrenfeld & Falkowski, 1997; Son, Wang, & Harding, 2014)
are known to lack accuracy at high latitudes (Cota, Wang, & Comiso,
2004; Matsuoka, Huot, Shimada, Saitoh, & Babin, 2007; Mitchell &
Holm-Hansen, 1991; Naik, D'Sa, Gomes, Goés, & Mouw, 2013;
Schallenberg, Lewis, Kelley, & Cullen, 2008). One of the major reasons is
that the current ocean color Chl-a algorithmswere developed usingmea-
surements primarily from lower latitudes (Bailey & Werdell, 2006;
Werdell & Bailey, 2005).

Due to the distinctive bio-optical environment of the Bering Sea, the
performance of global Chl-a algorithms (O'Reilly et al., 1998, 2000) is
unsatisfactory (Naik et al., 2013). More specifically, the elevated levels
of colored dissolved organic matter (CDOM) absorption results in over-
estimation, while highly packaged pigments associated with large cells
contribute to underestimation of Chl-a retrieved using the global empir-
ical ocean color algorithms at lower and higher Chl-a concentrations
(Naik et al., 2013), respectively. In addition, the weak correlation be-
tween Chl-a and detrital plus CDOM absorption, which together domi-
nate total light absorption at blue wavelengths, cause the poor
performance of the global empirical ocean color algorithms. Regionally
tuned algorithms should capture some of these distinctive bio-optical
properties and improve the accuracy of Chl-a retrievals, thereby en-
hancing our capability to detect phytoplankton fluctuations associated
with climate change in the Bering Sea.

In this paper, using long-term measurements from the Moderate
Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua
(Salomonson, Barnes, Maymon, Montgomery, & Ostrow, 1989), we
evaluate the performance of global and regional Chl-a algorithms, and
propose a new blended Chl-a algorithm for the eastern Bering Sea. In ad-
dition, the performance of MODIS-Aqua-derived normalized water-
leaving radiance spectra nLw(λ) (Gordon, 2005; IOCCG, 2010; Morel &
Gentili, 1996; Wang, 2006a), which are input to Chl-a algorithms, are
evaluated and its long-term spatial and temporal patterns are analyzed.
Bering Se

Fig. 1.Map of the eastern Bering Sea. Locations of the in situ radiometric and Chl-a measuremen
isobaths that divide the shelf into the inner domain, middle domain, outer domain, and basin r
MODIS-Aqua ocean color products are derived using the NOAA
Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing sys-
tem, whichwill be briefly described and discussed. The new blended Chl-
a algorithm is applied to MODIS-Aqua data to characterize seasonal and
interannual variability of Chl-a in relation to climatic variability in the
eastern Bering Sea.

2. Study area

The Bering Sea is a semi-enclosed sub-arctic sea linked to the Arctic
Ocean through the Bering Strait and to the North Pacific through the
Aleutian Islands (Fig. 1). The Bering Sea, like other sub-arctic marginal
seas, is characterized by seasonal ice coverage andhigh biological produc-
tivity (Schumacher& Stabeno, 1998; Stabeno et al., 1999). The eastern Be-
ring Sea shelf has a dynamic physical environment that is mainly
controlled by seasonal sea ice cover. During winter the water column is
well mixed. In summer the shelf can be divided into three distinct do-
mains across the shelf, the inner domain, the middle domain, and the
outer domain (Fig. 1), which is based on two distinct oceanographic
fronts, i.e., the inner front and the middle front (Coachman, 1986;
Kachel et al., 2002). Overlying the ~50m isobath, the inner front separates
the inner domain from the middle domain, while the middle front is a
broad transitional zone between approximately the 80 and 100m isobath
that separates themiddle domain from the outer domain (Fig. 1). Each of
these domains has characteristics in the physical, biological, and biogeo-
chemical environment (Lomas et al., 2012; Mathis et al., 2010; Moran
et al., 2012). The eastern Bering shelf can be further divided along the
shelf into northern and southern regions at ~60°N (Stabeno et al.,
2012a). The broad shelf (depth b 200 m) is separated from the deep
basin (depth N 200 m) by a steep continental slope.

Sea ice is the main governing factor that controls the physical and
chemical environment of the eastern Bering Sea shelf (Stabeno et al.,
a Map

ts are shown in black circles. The labeled solid lines indicate the 50, 100, 200, and 3000m
egion, respectively.



242 P. Naik et al. / Remote Sensing of Environment 163 (2015) 240–252
1999). Sea ice forms in latent heat polynyas off the coasts and lee side of
islands and is gradually driven southward by prevailing north-
northeasterly winds (Niebauer, Bond, Yakunin, & Plotnikov, 1999).
The ice edge melts when it comes in contact with warmer water, thus
the melting sea at the southern edge assists in further ice progress.
However, southerly transport of sea ice does not extend beyond the
shelf break as it encounters the basin waters that contain large reser-
voirs of heat content (Niebauer et al., 1999). An important feature of
the eastern Bering Sea shelf is the development of the cold pool in re-
sponse to sea ice formation. This cold pool develops in the previouswin-
ter and is located in the central part of the shelf where it persists
throughout summer constrained below the seasonal thermocline
(Hunt et al., 2002; Kachel et al., 2002; Stabeno, Bond, Kachel, Salo, &
Schumacher, 2001). The cold pool is defined as the region where the
bottom water temperatures are below 2 °C (Hunt et al., 2002; Stabeno
et al., 2001). It serves as an important migration barrier for subarctic
fish species such as the commercially important walleye pollock
(Kotwicki, Buckley, Honkalehto, & Walters, 2005; Mueter & Litzow,
2008), and it significantly affects the benthic predators (Grebmeier
et al., 2006). The cold pool is subjected to significant interannual vari-
ability closely tied to atmospheric, oceanic, and sea ice conditions dur-
ing the previous winter (Stabeno et al., 2001) and is thought to move
northward in response to sea ice loss (Mueter & Litzow, 2008).

The primary productivity in the eastern Bering Shelf is characterized
by strong temporal and spatial variability with localized regions of high
productivity (McRoy et al., 1987; Niebauer, Alexander, & Cooney, 1981;
Sambrotto, Niebauer, Goering, & Iverson, 1986; Springer & McRoy,
1993; Springer, McRoy, & Flint, 1996). The eastern Bering shelf waters
are generally regarded as nitrogen limited, while the deep basin is con-
sidered as a high nutrient low chlorophyll (HNLC) region (Leblanc et al.,
2005). The confluence of these nutrient conditions, together with
physical processes at the shelf break, support high levels of primary
production at the shelf break region also known as the ‘green belt’
(Springer et al., 1996). The spring phytoplankton bloom, which repre-
sents the bulk of the annual primary production, develops in the eastern
shelf and lasts until the nutrients in the shallow regions are exhausted
(Sigler et al., 2010; Sigler, Stabeno, Eisner, Napp, & Mueter, 2014). Sea
ice and its retreat appear to control the dynamics of the spring phyto-
plankton bloom and its subsequent transfer of energy to high trophic
levels (Coyle et al., 2011; Hunt & Stabeno, 2002; Hunt et al., 2002,
2011; Stabeno et al., 2001). Late sea ice retreat (April–May) during
cold years fosters an ice edge bloom, and much of this production is
exported to the benthos (Overland & Stabeno, 2004). On the other
hand, when the sea ice retreats in early March, the bloom does not de-
velop until May or June, and most of the energy from the bloom is re-
stricted to the pelagic environment (Hunt & Stabeno, 2002; Stabeno
et al., 2001). Thus, the timing of sea ice melting impacts an early versus
late phytoplankton bloom, and subsequently the type of ecosystem
being created, i.e., benthic or pelagic, which has a cascading effect on
higher trophic levels (Coyle et al., 2011; Hunt et al., 2002, 2011;
Overland & Stabeno, 2004).

3. Data and methods

3.1. NOAA-MSL12 ocean color data processing system

The NOAA-MSL12 ocean color data processing systemhas been used
to process and generate MODIS-Aqua ocean color products. MSL12 was
developed for a consistent and common ocean color data processing
system to produce ocean color data from multiple ocean color satellite
sensors (Wang, 1999; Wang & Franz, 2000; Wang, Isaacman, Franz, &
McClain, 2002). Specifically, NOAA-MSL12 is based on the Sea-viewing
Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS)
version 4.6, which uses the Gordon and Wang (1994) standard near-
infrared (NIR) atmospheric correction algorithm (Gordon & Wang,
1994). However, it should be noted that the NOAA-MSL12 has been
modified and improved to include: (1) the shortwave infrared
(SWIR)-based and NIR-SWIR combined ocean color data processing
(Wang, 2007;Wang & Shi, 2007;Wang, Son, & Shi, 2009); (2) improved
aerosol lookup tables (including polarization effect) and more accurate
Rayleigh radiance (Wang, 2005, 2006a,b); (3) algorithms for detecting
absorbing aerosols and turbidwaters (Shi &Wang, 2007); (4) improved
cloudmasking for coastal and inlandwaters (Wang&Shi, 2006); (5) im-
plementation of an ice-detection algorithm for global and regional
ocean color data processing (Wang & Shi, 2009), and other improve-
ments, e.g., identification of stray light and cloud shadow contamina-
tions (Jiang & Wang, 2013), an approach to improve the performance
of MODIS SWIR bands (Wang & Shi, 2012). Also, for the NOAA
operational ocean color data processing (near-real time), ancillary
data (the total column ozone amount, sea surface wind speed,
atmospheric pressure, and total column water-vapor amount) from
the Global Forecast System (GFS) model are used (Ramachandran &
Wang, 2011). The NOAA-MSL12 is also capable of deriving ocean color
products from theVisible Infrared ImagingRadiometer Suite (VIIRS) on-
board the Suomi National Polar-orbiting Partnership (SNPP) and has
been routinely producing VIIRS global ocean color products since
VIIRS launch on October 28, 2011 (Wang et al., 2013b).

In this study, we use the NIR-SWIR combined atmospheric
correction algorithm (Wang & Shi, 2007; Wang et al., 2009) in the
NOAA-MSL12 ocean color data processing system for generating ocean
color products from MODIS-Aqua measurements in the Bering Sea.

3.2. In situ data

A large database of in situ Chl-a data was obtained from the BEST
data archive, which is an NSF funded project in the Bering Sea (http://
www.nprb.org/bering-sea-project). A total of 1328 samples of Chl-a re-
corded from a depth less than 3mwere obtained from the BEST data ar-
chive (https://www.eol.ucar.edu/projects/best/). The in situ Chl-a data
were collected from March through July from 2007–2010 and data
ranged from ~0.04–40 mg m–3.

In situ normalized water-leaving radiance nLw(λ) data in the Bering
Sea were obtained from the SeaWiFS Bio-optical Archive and Storage
System (SeaBASS) (http://seabass.gsfc.nasa.gov/) (Werdell et al.,
2003) and a research cruise on the US Coast Guard Cutter (USCGC)
Healy in July 2008 in the region. The details on the in situ nLw(λ) data
processing are described in Naik et al. (2013). Our analysis of the radio-
metric data is restricted for nLw(λ) at wavelengths of 412, 443, 488, and
555 nm as there are fewer than 10 data points at other wavelengths. In
addition, Chl-a data corresponding to the existing SeaBASS nLw(λ) data
were also obtained from SeaBASS.

3.3. MODIS-Aqua data

MODIS-Aqua Level-1B data (Collection 6) were obtained from the
NASA MODIS Adaptive Processing System (MODAPS) website (http://
ladsweb.nascom.nasa.gov). These Level-1B data were processed to
ocean color Level-2 products usingNOAA-MSL12with the NIR-SWIR at-
mospheric correction algorithm (Wang, 2007;Wang & Shi, 2007;Wang
et al., 2009). Daily sea ice mask based on sea ice data obtained from
NASA was applied to daily Level-2 images. In addition, the Level-2
MODIS-Aqua ocean color data products were mapped to 1-km spatial
resolution and processed to generate daily, monthly, seasonal, and an-
nual composites. We defined the seasons in the region as follows:
March, April, and May are considered as spring, June, July, and August
as summer, September, October, and November as fall, and December,
January, and February as winter.

For matchups of satellite-derived and in situ-measured ocean color
products, we applied a procedure similar toWang et al. (2009). The pro-
cedure was designed to remove any spatial heterogeneity owing to
patchiness in waters from retrieved pixels. A 5 × 5 pixel box centered
at the in situ measurement location was used to extract MODIS-Aqua

http://www.nprb.org/bering-sea-project
http://www.nprb.org/bering-sea-project
https://www.eol.ucar.edu/projects/best/
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Table 1
Statistics results of MODIS-derived and in situ-measured nLw(λ) in the eastern Bering Sea.

MODIS vs. in situ nLw(λ)

Wavelength
(nm)

MODIS-Aqua In situ Analyses results

Meana Mediana Meana Mediana Mean
ratio

RMSDa Bias
diff.a

412 0.509 0.439 0.439 0.358 1.280 0.136 0.082
443 0.599 0.528 0.566 0.489 1.190 0.109 0.052
488 0.668 0.633 0.654 0.598 1.097 0.081 0.030
555 0.393 0.419 0.342 0.345 1.164 0.071 0.054

a Unit in mW cm−2 μm−1 sr−1.
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Level-2 ocean color products. If the number of pixels in the 5 × 5 box
exceeded 13 (N50% of pixels), then the matchup pair between
MODIS-Aqua and in situ data was included for further analysis. In
addition, only those pixels within 1.5 standard deviation (STD) of the
mean in the 5 × 5 box were included to recalculate the revised mean
(Wang et al., 2009). For the matchup analyses, several time difference
windows between MODIS-Aqua-derived and in situ-measured vari-
ables were analyzed to determine the optimum temporal resolution
(discussed later in Section 4.2). As the Bering Sea has persistent cloud
cover throughout the year, the standard recommendation of ±3 hours
(Bailey & Werdell, 2006) was too short to get an adequate number of
valid matchup pairs for a statistically significant analysis. A set of
masks (Wang et al., 2009) corresponding to high solar-zenith angle,
high sensor-zenith angle, sun glint, cloud/ice, and land were applied
to both individual granules formatchup analysis aswell as to composite
images generated from MODIS-Aqua Level-2 data. In particular, a new
stray light flag (Jiang & Wang, 2013) was applied and satellite data
noise was significantly reduced.

3.4. Sea ice extent, sea surface temperature, and wind speed

Sea ice extent data (2003–2012) were obtained from the National
Snow and Ice data center (https://nsidc.org/). These data were derived
from the Nimbus-7 Scanning Multichannel Microwave Radiometer
(SMMR) and the Defense Meteorological Satellite Program (DMSP)
Special Sensor Microwave/Imagers (SSM/Is) using the NASA team
algorithm developed by the Oceans and Ice Branch, Laboratory for
Hydrospheric Processes at NASA Goddard Space Flight Center (GSFC).
These data produced by the NASA team have a one-year latency period.

In addition, the wind speed data were obtained from the National
Centers for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) reanalysis project (http://
www.esrl.noaa.gov/psd/), and MODIS-Aqua Level-2 sea surface tem-
perature (SST) data were obtained from NASA Ocean Biology
Processing Group (OBPG) (http://oceancolor.gsfc.nasa.gov).

3.5. Chl-a algorithms

We evaluate the accuracy of three satellite ocean color empirical al-
gorithms to retrieve Chl-a, i.e., the MODIS-Aqua standard algorithm
OC3M (O'Reilly et al., 1998, 2000), an algorithm tuned for the Arctic
Ocean OC4L (Cota et al., 2004), and an algorithm tuned to the Bering
Sea, BS-OC (Naik et al., 2013). These empirical algorithms calculate
Chl-a from band ratios of normalized water-leaving reflectance
ρwN(λ) (Gordon & Wang, 1994), defined as ρwN(λ) = π⋅nLw(λ)/F0(λ),
where F0(λ) is the extraterrestrial solar irradiance (Thuillier et al.,
2003). It is noted that nLw(λ) and ρwN(λ) are interchangeable through
a constant π/F0(λ). For empirical Chl-a algorithms, they can generally
be written as:

log10 Chl‐a½ � ¼
Xn

i¼0

ci r
i ð1Þ

where r = max[ρwN(λ1)/ρwN(λ3), ρwN(λ2)/ρwN(λ3)], with max taking a
larger value from two reflectance ρwN(λ) ratios. Usually λ1 and λ2 are
at blue bands, while λ3 is at green wavelengths. The coefficients ci's
are those best fitting to the formulas. Specifically, the standard MODIS
OC3M algorithm (O'Reilly et al., 1998, 2000) can be expressed as:

log10 Chl‐a OC3Mð Þh i
¼ 0:243−2:582r þ 1:705r2−0:341r3−0:881r4;ð2Þ

where r = max[ρwN(443)/ρwN(551), ρwN(488)/ρwN(551)]. The Arctic
Ocean OC4L algorithm is written as (Cota et al., 2004):

log10 Chl‐a OC4Lð Þh i
¼ 0:592−3:607r; ð3Þ
where r = max[ρwN(443)/ρwN(555), ρwN(490)/ρwN(555)]. Finally the
Bering Sea BS-OC algorithm (Naik et al., 2013) is:

log10 Chl‐a BS‐OCð Þh i
¼ 0:437−3:537r; ð4Þ

where r = max [ρwN(443)/ρwN(555), ρwN(490)/ρwN(555)].
It should be noted that there is no 490 nm band for MODIS-Aqua,

thus ρwN(λ) at the band 488 nm was used for both Chl-a(OC4L) and
Chl-a(BS-OC). The error introduced due to a slight difference in the wave-
lengths can be considered to be relatively small, compared to errors in
the algorithm itself.
4. Evaluation and development of Chl-a algorithms

4.1. MODIS-Aqua-derived and in situ-measured nLw(λ) comparisons

MODIS-Aqua-derived nLw(λ) spectra were overestimated for all
wavelengths compared to in situ measurements (Table 1), e.g., mean
values of in situ nLw(λ) at wavelengths of 412, 443, 488, and 555 nm
of 0.439, 0.566, 0.654, and 0.342 mW cm−2 μm−1 sr−1, respectively,
and the corresponding MODIS-Aqua-derived values of 0.509, 0.599,
0.668, and 0.393 mW cm−2 μm−1 sr−1, respectively. In general, a
good agreement was found between satellite and in situ matchups as
shown for nLw(λ) at wavelengths of 412, 443, 488, and 555 nm for a
time difference of 24 hours between satellite and in situ measurements
(Fig. 2a and Table 1). However, the mean and median ratios of MODIS-
Aqua to in situ nLw(λ) ranged from 1.097–1.280 and 1.052–1.242
(Fig. 2a and Table 1), respectively, with the best agreement being at
488 nm (Fig. 2a and Table 1).

Empirical ocean color algorithms for retrieval of Chl-a, as discussed
previously (e.g., OCM3, Arctic-OC4L, BS-OC, etc.), all use blue-green
nLw(λ) ratios (Cota et al., 2004; Naik et al., 2013; O'Reilly et al., 1998).
To evaluate and understand the accuracy of Chl-a algorithms, it is essen-
tial to evaluate the performance of blue-green nLw(λ) ratios from satel-
lite measurements. As long as these satellite-derived nLw(λ) ratios are
satisfactorily compared to in situ matchup data, Chl-a algorithms can
be developed or regionally tuned for better performance using these
nLw(λ) ratio values. An analysis of the blue to green nLw(λ) ratios from
MODIS-Aqua and in situ measurements for the study region show
good correlation (Fig. 2b), i.e., the mean ratios in nLw(443)/nLw(555)
and nLw(488)/nLw(555) were 1.009 and 0.942, respectively, thereby
providing confidence in the development of regional Chl-a algorithms
for the Bering Sea based on these nLw(λ) (or ρwN(λ)) ratios. Further-
more, results from the nLw(λ) ratio matchup analyses in Fig. 2b show
that MODIS-Aqua-derived nLw(λ) ratios are quite accurate, and errors
in satellite-derived Chl-a values in the Bering Sea are not primarily
from the nLw(λ) ratio (i.e., atmospheric correction), but from the Chl-a
algorithm itself (e.g., its applicability to the region).

https://nsidc.org/
http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/
http://oceancolor.gsfc.nasa.gov


Fig. 2. Comparisons of (a) MODIS-Aqua-derived nLw(λ) with in situ-measured nLw(λ) at
wavelengths of 412, 443, 488, and 555 nm, and (b) MODIS-Aqua-derived nLw(λ) ratio
with in situ-measured nLw(λ) ratio between bands 443 and 555 nm, nLw(443)/
nLw(555), and 488 and 555 nm, nLw(488)/nLw(555).

Fig. 3. Comparison of matchup results for time difference of (a) 8 h and (b) 24 h between
MODIS-Aqua-derived and in situ-measured Chl-a data for cases of MODIS Chl-a data cal-
culated using OC3M—the standardMODIS-Aqua Chl-a algorithm, OC4L—a Chl-a algorithm
regionally tuned to the Arctic Ocean, and BS-OC—a Chl-a algorithm regionally tuned to the
eastern Bering Sea.

Table 2
Statistics of MODIS-derived and in situ-measured Chl-a in the eastern Bering Sea.

MODIS vs. in situ Chl-a

Algorithm Mean ratio RMSDa Bias Diff.b

Time difference ≤ 8 h
OC3M 2.528 0.470 0.372
Arctic-OC4L 2.896 0.469 −0.133
BS-OC 2.088 0.372 0.208

Time difference ≤ 24 h
OC3M 2.232 0.408 −0.239
Arctic-OC4L 2.624 0.428 0.886
BS-OC 1.881 0.332 0.260

a Calculated in log-scale.
b Unit in mg m−3.
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4.2. MODIS-Aqua-derived and in situ-measured Chl-a comparisons

To evaluate the optimum time difference for obtaining a sufficient
number of valid collocated satellite and in situmatchup data points, sev-
eral temporal windows between satellite and in situ measurements
have been examined. For the study region, Bailey and Werdell (2006)
criteria were found to be too stringent to obtain adequate number of
valid matchup points (only 13 matchup points for a 3 hour time differ-
ence). From our analysis, it was subjectively decided to use a 24-hour
time difference as the optimal temporal window. This choice was
based on themarked increase in the number ofmatchup points without
any obvious impact on the statistics (Fig. 3 and Table 2). Although the
number of valid matchup points was even larger for weekly averaged
satellite data, it was decided not to use it for two reasons: the first was
due to the high scatter that was observed between the matchups
(standard deviation = 8.29), and second, it was believed that weekly
data would average out too much of the environmental variability in
the study region.

Three Chl-a algorithms have been examined for the study region,
OC3M for the standard MODIS-Aqua algorithm for global open ocean
(O'Reilly et al., 1998, 2000), Arctic-OC4L for an algorithm regionally
tuned for the Arctic Ocean (Cota et al., 2004), and BS-OC for an algo-
rithm regionally tuned to the Bering Sea (Naik et al., 2013). The results
of these analyses are provided in Fig. 3 and Table 2. The mean ratios
between MODIS and in situ Chl-a data within 8 hours for the OC3M,
Arctic-OC4L, and BS-OC are 2.528, 2.896, and 2.088, respectively,
compared with the corresponding values of 2.232, 2.624, and 1.881, re-
spectively, for a time difference of 24 h. Table 2 provides statistics results
(including mean ratio, root-mean-square deviation (RMSD), and bias
difference) of MODIS-Aqua-derived versus in situ-measured data for
the three Chl-a algorithms for cases with time differences of 8 and
24 hours, respectively. It is noted that RMSD values for Chl-a are calcu-
lated in log-scale (bias difference in linear scale). Chl-a comparison re-
sults are quite comparable for both time differences of 8 and 24 hours.
Results in Fig. 3 show that the standard OC3M Chl-a algorithm
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Fig. 4. In situ-measured Chl-a as a function of MODIS-Aqua-derived ρwN(λ) ratio between
bands (a) 443 and 551 nm, ρwN(443)/ρwN(551), (b) 488 and 551 nm, ρwN(488)/ρwN(551),
and (c) 667 and 551 nm, ρwN(667)/ρwN(551).
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overestimates and underestimates Chl-a values at low and high concen-
trations, correspondingly, compared to the in situ data. Previous studies
in the Bering Sea have shown that overestimation at low Chl-a values is
due to the influence of CDOM,while underestimation at high Chl-a is at-
tributed to package effect of phytoplankton pigments (Naik et al., 2013).
Similar results were observed for the Arctic-OC4L and BS-OC, although
the underestimation and overestimation were not as pronounced as
those of OC3M. In fact, the BS-OCmethod showed the best performance
among the three algorithms. However, the BS-OC algorithm tends to
overestimate Chl-a data, compared to the in situ measurements
(mean ratio = 1.881). As the existing empirical algorithms to retrieve
Chl-a fromMODIS-Aqua for the Bering Sea do not perform satisfactorily,
a new blended Chl-a algorithm using MODIS-Aqua-derived ρwN(λ)
spectra has been developed and proposed.

4.3. A new blended Chl-a algorithm for the eastern Bering Sea

For the eastern Bering Sea, the current algorithms either underesti-
mate or overestimate Chl-a values with the BS-OC showing better re-
sults among them. A previous Chl-a algorithm developed for the
Bering Sea (i.e., BS-OC) was limited in its temporal range since the
data used to develop the algorithm was collected during summer, and
hence could not be expected to perform well for other seasons. Ideally,
in order for satellite sensors to capture a broad range of Chl-a associated
with strong seasonality of sea-ice in the Bering Sea, a suite of concurrent
in situ measurements of nLw(λ) and Chl-a across the distinct seasons is
required to develop Chl-a algorithms from in situ measurements that
can then be applied to satellite data. To our knowledge, such concurrent
measurements have not been obtained for the Bering Sea. However, a
large dataset of Chl-a measurements were collected covering the dis-
tinct seasons as part of a multi-year National Science Foundation
(NSF) funded study in the Bering Sea (i.e., BEST). Thus, a possible ap-
proach to deal with the lack of concurrent in situ measurements of
nLw(λ) and Chl-a across the seasons is to use the in situ-measured
Chl-a seasonally and the corresponding satellite-measured nLw(λ)
data. In fact, most ocean color algorithms use reflectance ρwN(λ) ratios,
e.g., for Chl-a algorithm as discussed previously (O'Reilly et al., 1998).
The relationships between blue or red and green ρwN(λ) ratios from
MODIS-Aqua versus in situ Chl-a data in the Bering Sea are shown in
Fig. 4. A significant relationship with good correlation was observed be-
tween the satellite-derived ρwN(λ) ratios and in situ Chl-a data, even
though the MODIS-Aqua-derived ρwN(λ) data differ spatially (1-km)
and temporally (24 hours) from the in situ Chl-a measurements.

Similar resultswere observedusing in situ-measured ρwN(λ) and Chl-
a obtained from the SeaBASS database for the Bering Sea. We could only
make comparisons between the reflectance ratios in ρwN(443)/ρwN(555)
(r(443,555)) and ρwN(488)/ρwN(555) (r(488,555)) since the SeaBASS
data do not have any measurements for ρwN(551). Remarkably, similar
coefficients were observed from in situ data (i.e., log10[Chl-a] =
0.723− 2.144⋅log10[r(443,555)]) and satellite data (i.e., log10[Chl-a] =
0.871 − 2.092⋅log10[r(443,555)]) between Chl-a versus reflectance
ratio r(443,555). The relatively small differences in the coefficients
from satellite and in situ fittings can be attributed to several factors,
such as the uncertainty from atmospheric correction that cause the
satellite-derived ρwN(λ) to differ from in situ ρwN(λ) (e.g., Fig. 2), and
the spatial (5 × 5 pixels averaging) and temporal (24 hours) variability.

Over the entire range of Chl-a, the ratio of ρwN(443)/ρwN(551)
(blue-green) shows the strongest correlation (Fig. 4a). However, on a
closer examination we found that the blue and green ρwN(λ) ratios per-
form better at a lower Chl-a concentration (b~1mgm–3), while the red-
green ρwN(λ) ratio perform better at a higher Chl-a concentration
(N~1 mg m–3) (Fig. 4c). In particular, the reflectance ratios in
ρwN(443)/ρwN(551) and ρwN(488)/ρwN(551) are strongly correlated to
Chl-a b ~1 mg m–3 with correlation coefficients of 0.910 and 0.834, re-
spectively, whereas the ratio in ρwN(667)/ρwN(551) has a good correla-
tion to Chl-a for its values N ~1 mg m–3 with correlation coefficient of
0.881. It is particularly noted that the reflectance ratio in ρwN(667)/
ρwN(551) is quite sensitive to large Chl-a values N~1 mg m–3. Hence,
an algorithm that blends these two ρwN(λ) ratios has been developed.

For low Chl-a concentrations, an algorithm that utilizes the maxi-
mum blue–green ρwN(λ) ratio r(B-G) is proposed, i.e.,

log10 Chl‐a 1ð Þh i
¼ −0:034−2:362r B‐Gð Þ

; forr B‐Gð Þ
N1:4; ð5Þ

where r(B-G) = max [ρwN(443)/ρwN(551), ρwN(488)/ρwN(551)], with
max taking the larger value from two reflectance ρwN(λ) ratios. On the
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other hand, an algorithm that uses the red-green ρwN(λ) ratio r(R-G) is
developed, i.e.,

log10 Chl‐a 2ð Þh i
¼ 3:140þ 4:160r R‐Gð Þ

; for r B‐Gð Þ
b1:0; ð6Þ

where r(R-G)= ρwN(667)/ρwN(551). In producing regional Chl-a images,
a realistic smooth transition between the two Chl-a algorithms is need-
ed to avoid discontinuity between the distinct domains of the Bering
Sea. Low blue-green ρwN(λ) ratios were observed along the coast in
the inner domain and high ρwN(λ) ratios were observed off the conti-
nental slope in the deep Bering Sea basinwith intermediate values else-
where in the study region. To allow a smooth transition between the
high and low ρwN(λ) ratios, a weighting function that blends the two
Chl-a models is defined, i.e.,

W ¼ −2:5þ 2:0r B‐Gð Þ
; for 1:0≤r B‐Gð Þ≤1:4: ð7Þ

Thus, the blended Chl-a model can be expressed as:

Chl‐a ¼ WChl‐a 1ð Þ þ 1−Wð ÞChl‐a 2ð Þ
; ð8Þ

where Chl-a(1) and Chl-a(2) are from Eqs. (5) and (6), respectively, and
weightW=1 forW≥ 1 andW=0 forW≤ 0, which are calculated ac-
cording to Eq. (7).

In summary, for r(B-G) b 1.0, Chl-a is calculated using Eq. (6), while
for cases with r(B-G) N 1.4 Chl-a is computed using Eq. (5). For all other
r(B-G) values, i.e., 1.0 ≤ r(B-G) ≤ 1.4, Chl-a data are computed using
Eq. (8) based on theweighting function calculated in Eq. (7). Evaluation
Fig. 5.MODIS-Aqua-derived Chl-a using the new blended Chl-a algorithm compared with
the in situ data for (a) matchup comparison with scatter plot of MODIS versus in situ data
and (b) histogram comparison results.
of results shows that the blended scheme described above works well
and produces Chl-a images without obvious discontinuities.

Fig. 5 shows the significantly improved Chl-a data from the blended
Chl-a algorithm as demonstrated in the statistics results, such as mean
andmedian ratios andSTD values (Fig. 5a), inMODIS-Aqua-derived ver-
sus in situ-measured Chl-a data. The mean and median ratios between
MODIS and in situ Chl-a data are 1.112 and 1.024 with STD of 0.548. In
addition, in Fig. 5a the log-scale RMSD value is 0.212 (corresponding
to Chl-a of 1.629mgm–3) andbias difference is−0.364mgm–3. The im-
proved performance of the blended Chl-a algorithm for the Bering Sea is
further validated by a good agreement of frequency distribution be-
tween the MODIS-Aqua-derived Chl-a using the blended algorithm
and the in situ-measured Chl-a data in the Bering Sea (Fig. 5b). Both
of the distributions peak at ~0.25 mg m–3. The better performance of
the newly developed blended Chl-a algorithm allows the assessment
of long-term trends in phytoplankton biomass associated with climatic
fluctuations in the Bering Sea.

5. MODIS-Aqua-derived nLw(λ) and Chl-a in the Bering Sea

5.1. Climatology of MODIS-Aqua-derived nLw(λ)

Seasonal climatology images of MODIS-Aqua-derived nLw(λ) at 443,
488, 551, and 667 nm from July 2002 to December 2013 are shown in
Fig. 6. Strong seasonal and spatial variability is observed in the study
area (Figs. 6 and 7). The spatial distribution patterns of nLw(λ) are
similar, showing highs near the coast and lows in the outer domain
irrespective of wavelength. However, high nLw(λ) values near the
coastal region are more apparent at wavelengths of 551 and 667 nm
(green and red) compared to nLw(λ) at blue wavelengths (412 and
443nm). The spatial patterns are not uniformevenwithin each domain;
localized spatial patterns are evident from the seasonal images. For ex-
ample, in winter very high nLw(λ) values are shown at the center of the
middle domain and low nLw(λ) values elsewhere. During spring and fall
seasons, high nLw(λ) values are constrained within the central part of
the inner and middle domains. On the eastern Bering Sea shelf, the
seasonal peak in nLw(λ) values appears during winter, while the lowest
values are observed during summer.

The seasonal mean nLw(λ) values were calculated from the seasonal
climatology images for the inner, middle, and outer domains, as well as
the basin region in the Bering Sea (Fig. 7). A strong wavelength depen-
dent seasonal pattern in nLw(λ) is observed across all the regions, with
the seasonal variability being more significant for nLw(λ) at the green
and red bands relative to the blue bands. The seasonal patterns of
nLw(λ) are similar in the inner and middle domains and different in
the outer domain to a certain extent. In particular, the inner andmiddle
domains show significantly high nLw(λ) values at the green and red
wavelengths in winter, indicating more turbid waters in these regions.
In contrast, the seasonal variability is much less pronounced in the
outer domain relative to the other regions. The shelf (Fig. 7a–c) and
basin (Fig. 7d) show contrasting seasonal patterns. While the highest
nLw(λ) values are observed in winter and the lowest in summer for
most wavelengths on the eastern shelf, the opposite nLw(λ) pattern is
observed for the basin region at all wavelengths.

5.2. Climatology of MODIS-Aqua-derived Chl-a using the new blended
algorithm

Seasonal climatology images of Chl-a derived using the newly devel-
oped blended Chl-a algorithm fromMODIS-Aqua for the eastern Bering
Sea are shown in Fig. 8. The eastern Bering Sea shelf region is character-
ized by high Chl-a concentrations throughout the year relative to the
Bering Sea basin with marked seasonality (Lomas et al., 2012; Moran
et al., 2012). High values of Chl-a near the coast are observed all year
round, with wider coverage in spring and fall seasons. The spring
bloom is evident in all the domains, while the fall bloom appears
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Fig. 6. Seasonal climatology images of MODIS-Aqua-derived nLw(λ) at 443, 488, 551, and 667 nm for (a–d) spring, (e–h) summer, (i–l) fall, and (m–p) winter. Color scale for nLw(443),
nLw(488), and nLw(551) is 0–2 mW cm−2 μm−1 sr−1, and for nLw(667) is 0–1 mW cm−2 μm−1 sr−1.
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clearly in the inner and middle domains. During summer, the shelf
break region, the so-called ‘green belt,’which is the most productive
region of the Bering Sea, has relatively high values in contrast to low
values in other regions. Indeed, Fig. 8 shows that the Chl-a seasonal
variability in the eastern Bering Sea can be simply characterized by
a spring bloom (April–May), a summer decrease (June–August),
and a fall bloom (September–October). Previous studies (D'Sa,
Miller, & McKee, 2007; Son & Wang, 2012; Tzortziou et al., 2007)
have shown that, because reflectance ρwN(λ) at the red band
(or the reflectance ratio of red to green) is sensitive to backscatter-
ing, there will be a response to non-algal particles (sediments) in
addition to phytoplankton. Thus, the elevated Chl-a values near the
coast and during winter (intense mixing) may be an artifact of higher
backscattering detected by the new blended algorithm. To address this
limitation of the new blended algorithm, we have excluded Chl-a values
greater than 40 mg m–3 in calculations of monthly and annual estimates
shown in Figs. 9 and 10. Further, we found that using mean or median
(ormedianwith Chl-a≤40mgm–3) in themonthly and annual estimates
did not have a significant effect on trends shown in Figs. 9 and 10.

The monthly MODIS-Aqua-derived Chl-a values (median) from the
blended Chl-a algorithm are shown in Fig. 9, demonstrating the distinct
seasonality in Chl-a for the region. In all of the domains, there is a rapid
Chl-a increase in spring from the low values in winter followed by a
summer decrease, and then an increase again in fall. However, the
timing of the spring bloom in each of the domains is different across
the shelf. In general, the spring bloom begins in March steadily
progressing across the shelf, starting in the inner domain followed by
the middle and outer domain, and finally the shelf break over a course
of ~2 months (Fig. 9). The fall bloom is clearly present in the inner
and middle domains, and relatively less evident in the outer domain.
In the basin region, however, Chl-a concentrations are quite low
throughout the year with slightly elevated values in May–June.
5.3. Long-term trends of Chl-a in relation to the physical environment

The 11-years of MODIS-Aqua-derived Chl-a using the blended Chl-a
algorithm shows the role of sea ice, SST, and wind speed in regulating
the monthly and annual Chl-a trends in the eastern Bering Sea
(Fig. 10). Overlaid on the annual cycle of Chl-a is the strong interannual
variability closely linked to sea-ice concentration (Fig. 10b). Indeed, the
complex interplay of these three major physical variables determines
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Fig. 7. Spectral characteristics of MODIS-Aqua-derived nLw(λ) for the region of (a) inner domain, (b) middle domain, (c) outer domain, and (d) basin region of the Bering Sea for spring,
summer, fall, and winter seasons.
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the timing and the fate of the spring phytoplankton bloom (Hunt et al.,
2002; Sigler et al., 2014).

The sea ice extent, SST, and wind speed displayed strong seasonal
patterns (Fig. 10a). SST is the lowest in winter and highest in summer
(as expected), while wind speed is the weakest in summer and stron-
gest in winter (Fig. 10a). The spring bloom is strongly associated with
the sea ice retreat; more precisely, the timing of sea ice retreat deter-
mines whether there will be an ice edge bloom or open water bloom.
Sea ice and SST in the Bering Sea are characterized by strong inter-
annual variability. Chl-a peaks between March and April as the sea ice
begins to recede, and then again to a lesser magnitude in October
when storm induced mixing brings nutrients deeper in the water
column to the surface. During the study period, the annual sea ice
extent in the Bering Sea varied ~20% around its mean value of
~430,000 km2. The years with the three lowest sea ice extent were
2003–2005, while the years of the three highest sea ice extent were
2009, 2010, and 2012 (Fig. 10b). The year 2012 was remarkable in sea
ice coverage, reaching a record extent. Moreover, sea ice coverage in
that year (and 2009) retreated the latest since 1985 (http://access.
afsc.noaa.gov/reem/ecoweb/eco2012reportcardEBS.pdf). The sea ice
coverage retreats within a period of ~1 month between May and June,
while the sea ice coverage advances between September and October,
or sometimes as late asNovember. A strong significantly negative corre-
lation is found between annual mean sea ice extent and annual mean
SST (r2 = 0.755, p = 0.001). A significant increase in annual mean sea
ice extent (r2 = 0.611; p = 0.008) and decrease in annual mean SST
(r2 = 0.844; p= 0.001) are observed for the study period in the Bering
Sea, with intense interannual variability, while thewind speed does not
exhibit any significant trend (p N 0.5) (Fig. 10b).
It is hypothesized that during thewarm years reduced sea ice cover-
age portends a longer growing season and high temperatures favor high
phytoplankton growth, hence high Chl-a concentrations. In contrast,
during the cold years, extensive sea ice coverage and low temperatures
favor low phytoplankton growth rates, hence low Chl-a values (Lomas
et al., 2012). Consistentwith previous studies, in recent years the Bering
Sea can be categorized into ‘cold’ and ‘warm’ years (Stabeno et al.,
2012b). The years 2003–2005 can be categorized as ‘warm’ years,
while the years 2007–2010 and 2012 can be categorized as ‘cold’ years
for the study period. However, the corresponding Chl-a values grouped
together between the ‘warm’ and ‘cold’ years are not significantly differ-
ent, neither do they exhibit any significant changes over the entire study
period (p N 0.5). Although the seasonal Chl-a changes appear coherent
with sea ice and SST, interannual changes in Chl-a are more difficult to
interpret. In fact, Chl-a exhibits no correlation to SST and sea ice extent
over the entire studyperiod. However, when the yearswith extreme sea
ice extent and relatively high Chl-a (i.e., 2010 and 2012) are excluded,
Chl-a in the region exhibits somemeaningful negative and positive cor-
relationswith sea ice extent (r=−0.78; p= 0.025) and SST (r= 0.75;
p = 0.021), respectively. For the entire period (including 2010 and
2012), correlation results for Chl-a and sea ice extent are (r = 0.16;
p = 0.66), and results for Chl-a and SST are (r = −0.19; p = 0.59).
The years 2009, 2010, and 2012 were very cold years, but Chl-a values
displayed a varying range (Fig. 10b). Thus, even though we observed
higher Chl-a values duringwarmyears, equal or sometimehigher annu-
al mean Chl-a values were also shown in some cold years.

The magnitude of annual phytoplankton biomass is not as critical as
timing of the spring phytoplankton bloom, which determines whether
the benthic or the pelagic environment receives most of the primary
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production. During the cold years the spring bloom occurs early
(March–April) and in cold waters (~1–2 °C), which is not efficiently
grazed by zooplankton supporting a strong benthic habitat. Contrast-
ingly, during the warm years the spring bloom occurs in relatively
warm waters (~4–7 °C), with efficient grazing by zooplankton and
most of the primary production is restricted to the pelagic environment
Fig. 9.MODIS-Aqua-derivedmonthly climatologyChl-a values using the newblended Chl-
a algorithm for the inner domain, middle domain, outer domain, and the basin region in
the Bering Sea.
(Hunt et al., 2002; Stabeno et al., 2012b). These results suggest that a
complex interplay of the physical environment controls on the phyto-
plankton biomass, the extent of this control warrants further research
and is beyond the scope of this paper.

6. Discussions and summary

Development of robust ocean color Chl-a algorithms for high-
latitude oceanic regions from satellites is a challenge due to their unique
bio-optical properties (Mitchell & Holm-Hansen, 1991; Sosik, Vernet, &
Mitchell, 1992; Stramska, Stramski, Kaczmarek, Allison, & Schwarz,
2006; Wang, Cota, & Ruble, 2005). High-latitude oceanic regions are
characterized by strong seasonality coupledwith its variations in phyto-
plankton concentration and type (Lomas et al., 2012;Moran et al., 2012;
Stramska et al., 2006). The seasonal changes in phytoplankton cause the
species specific phytoplankton absorption to vary dramatically, with
high values for smaller cells and low values for larger cells, which causes
large differences in Chl-a retrievals from standard empirical algorithms
(Mitchell & Holm-Hansen, 1991; Naik et al., 2013). Furthermore, high
CDOM concentration contributes significantly to total light absorption
at shorter wavelengths around the blue region, which causes Chl-a to
be overestimated by standard Chl-a algorithms (Naik et al., 2013).

Thework presented here incorporates a large seasonally and spatial-
ly wide in situ dataset to develop a robust Chl-a algorithm for the east-
ern Bering Sea. The first step towards this task was to validate the
MODIS-Aqua nLw(λ) spectra as well as nLw(λ) ratios, which were
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Fig. 10. (a) Monthly climatology and (b) annual time series of sea ice extent, SST, wind
speed, and MODIS-Aqua-derived Chl-a using the new blended Chl-a algorithm for the
eastern Bering Sea shelf. Units for Chl-a, SST, and wind speed are mg m−3, °C, and
m s−1, respectively, and scaled in left, while the sea ice extent is in km2 and scaled in
the right.
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derived using the NIR-SWIR combined atmospheric correction algo-
rithm (Wang, 2007; Wang & Shi, 2007; Wang et al., 2009) with the
NOAA-MSL12 ocean color data processing system. The MODIS-Aqua-
derived nLw(λ) at individual wavelengths as well their ratios that go
as inputs into the empirical Chl-a algorithms show good agreement
with those from in situmeasurements. In fact, the performance of atmo-
spheric correction in the Bering Sea using the NOAA-MSL12 is consis-
tent with those from various other regions, e.g., the Chesapeake Bay
region (Son & Wang, 2012), the China east coastal region (Wang,
Tang, & Shi, 2007), China's inland Lake Taihu (Wang, Shi, & Tang,
2011), and global ocean data (Wang et al., 2009), as well as measure-
ments from other satellite sensors (Wang, Shi, & Jiang, 2012, 2013a,
2013b; Wang et al., 2013a, 2013b).

Although several empirical and semi-analytical algorithms have
been developed to compute Chl-a, only few of them have been specifi-
cally developed for high latitudewaters.We examined three Chl-a algo-
rithms to verify their performance for the eastern Bering Sea, namely
the standard MODIS-Aqua Chl-a algorithm OC3M, an algorithm tuned
for the Arctic, OC4L, and an algorithm tuned for the Bering Sea, BS-OC.
Out of the three the BS-OC performed the best, however, it still
overestimated Chl-a in the region. The new Chl-a algorithm proposed
here reduced these errors by using a blended approach, in particular,
using water-leaving reflectance signal from the red band. This idea is
similar to some other approaches using nLw(λ) at the red and NIR
wavelengths for coastal waters (Gitelson, Schalles, & Hladik, 2007). In
the blended approach we used two MODIS-Aqua-derived band ratios
to estimate Chl-a, i.e., at low Chl-a concentrations the blue to green
ratio (ρwN(443)/ρwN(551)) or (ρwN(488)/ρwN(551)) is used, while for
higher Chl-a concentration the red to green reflectance ratio
(ρwN(667)/ρwN(551)) is used. Frequency distribution histograms
showed that Chl-a data derived using the blended Chl-a algorithm are
very similar to the in situ Chl-a measurements, since both of the histo-
grams peak at ~0.25 mg m–3. The blended Chl-a algorithm proposed
here can be applied to other high latitude offshore regions. However,
like any other empirical model the algorithm coefficients will likely
have to be tuned to the region of interest.

The blended Chl-a algorithm has been applied to long-term
MODIS-Aquameasurements from 2002–2013. In addition, we analyzed
long-termMODIS-Aqua-derived nLw(λ) spectra data. To our knowledge
it is the first time that validated nLw(λ) and Chl-a derived from a region-
ally tuned algorithm with relatively low uncertainties have been ana-
lyzed for the Bering Sea. We found that, although similar Chl-a trends
(qualitatively) can be derived using the MODIS standard OC3M algo-
rithm for the region, there are obvious differences (someare significant)
in the magnitude of the peaks and troughs in the trends, which are also
quite important.

The nLw(λ) composite images and time series show that there is
strong seasonal variability in nLw(λ) for various regions in the Bering
Sea. This seasonal variability is more pronounced for the green and
red bands relative to the blue bands. On the eastern Bering Sea shelf,
the seasonal highs and lows in nLw(λ) appear inwinter and summer, re-
spectively. Some of the localized high values observed during winter
and late fall are probably due to mixing caused by storm events.

The long-termMODIS-Aqua-derived Chl-a data using the new Chl-a
algorithm have been also studied in relations to sea ice, SST, and wind
speed in the Bering Sea. The spatial and temporal patterns of Chl-a are
consistent with those observed in primary productivity, with high spa-
tial and annual variability (Lomas et al., 2012;Mueter et al., 2009). From
the seasonal composite images, the distinct spatial patterns of spring
and fall blooms are clearly evident; while the spring bloom extended
to all the three domains and the entire shelf, the fall bloom is restricted
to the inner and middle domains and southern shelf region. The spatial
patterns of Chl-a are consistent with those seen in primary productivity
(Lomas et al., 2012). In fact, the spring bloom progresses from the inner
shelf towards the outer shelf in a period of ~2 months. A similar pro-
gression of the spring bloom in the region was seen from the in situ
measured primary productivity data (Lomas et al., 2012; Rho &
Whitledge, 2007).

The interannual variability is closely linked to variability in the
physical environment. A complex interplay of sea ice, SST, and wind
speed determine the timing, intensity, and the fate of the spring bloom
(Hunt et al., 2002; Lomas et al., 2012; Stabeno et al., 2012a). For a given
year, one of these variables or a combination of them influences the
timing and type of spring bloom. During warm years, Chl-a is expected
to be high owing to a longer growing season and higher phytoplankton
growth rate. On the other hand, during cold years shorter growing season
and lower phytoplankton growth rates would result in lower Chl-a
(Lomas et al., 2012; Mueter et al., 2009). Brown, van Dijken, and Arrigo
(2011) observed that yearswith low sea ice cover (e.g., 2003)were asso-
ciated with high SSTs and Chl-a, while years with high ice cover
(e.g., 1999) were associated with low SSTs and Chl-a. However, they
also show that relatively low Chl-a was observed with relatively low
ice coverage (e.g., 2007), and high Chl-awith relatively high ice coverage
(e.g., 2006). Furthermore, Brown and Arrigo (2013) observed that years
with early sea ice retreat exhibited elevated net primary production.
After excluding 2010 and 2012 (extensive ice coverage), we observed
some slight differences in Chl-a between warm (2003–2005) (mean
Chl-a of 1.786 mg m–3) and cold (2007–2009) years (mean Chl-a of
1.347 mg m–3) (Fig. 10b), which are consistent with results from
Brown et al. (2011). For the 11-year period of our study, Chl-a did
show some correlations with sea ice and SST when cases with high
Chl-a and extensive sea ice extent (2010 and 2012) are excluded.
Also, after excluding 2010 and 2012, results in Fig. 10b show that
there is no significant trending in Chl-a since 2007.

Image of Fig. 10
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The Bering Sea responds to a range of physical driving forces, from re-
gional episodic events to interannual and decadal scales (Schumacher &
Alexander, 1999; Stabeno et al., 1999, 2001). The interannual and decad-
al variabilities are likely to remain high as observed from the period of
warm years and cold years, hence making it difficult to predict changes
in the Bering Sea ecosystem. A long-term monitoring of the eastern
Bering Sea ecosystem is necessary to understand the impacts of such var-
iability on its rich biota. The new blended Chl-a algorithm proposed in
this study can be applied to MODIS-Aqua as well as ocean color data
from other sensors (e.g., SeaWiFS, VIIRS, etc.) to obtain a more accurate
long-term Chl-a record in order to advance our understanding on the
likely impacts of climate change on the Bering Sea ecosystem.

Acknowledgments

Some in situ nLw(λ) and Chl-a data were from the NASA SeaBASS
database. The authors are grateful to the all scientists and investigators
who contributed these valuable in situ data. Funding for this projectwas
partially provided by NASA grants NNX07AR15G and NNX10AP10G to
E. D'Sa, J. Goes and C. Mouw, NSF grants 0732640, 0732430 and
1107250 to C. Mordy, and NSF grant 0813985 to R. Sonnerup. The au-
thors are grateful to F. Menzia, P. Proctor and E. Wisegarver for analysis
of in situ data. The BEST project was partially funded by the Joint Insti-
tute for the Study of the Atmosphere and Ocean (JISAO) under NOAA
Cooperative Agreements NA17RJ1232 and NA10OAR4320148, and is
contribution 2269 to NOAA's Ecosystems and Fisheries-Oceanography
Coordinated Investigations, contribution 2255 to JISAO, contribution
4202 to NOAA's Pacific Marine Environmental Laboratory, and BEST—
BSIERP publication number 142. The views, opinions, and findings
contained in this paper are those of the authors and should not be con-
strued as an official NOAA or U.S. Government position, policy, or
decision.

References

Aiken, J., Moore, G. F., & Hotligan, P. M. (1992). Remote sensing of oceanic biology in
relation to global climate change. Journal of Phycology, 28, 579–590.

Bailey, S. W., & Werdell, P. J. (2006). A multi-sensor approach for the on-orbit valida-
tion of ocean color satellite data products. Remote Sensing of Environment, 102,
12–23.

Behrenfeld, M. J., & Falkowski, P. G. (1997). Photosynthetic rates derived from satellite-
based chlorophyll concentration. Limnology and Oceanography, 42, 1–20.

Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C.,
et al. (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444,
752–755.

Behrenfeld, M. J., Randerson, J. T., McClain, C. R., Feldman, G. C., Los, S. O., Tucker, C. J., et al.
(2001). Biospheric primary production during an ENSO transition. Science, 291,
2594–2597.

Brown, Z. W., & Arrigo, K. R. (2013). Sea ice impacts on spring bloom dynamics and net
primary production in the Eastern Bering Sea. Journal of Geophysical Research,
Oceans, 118, 43–62. http://dx.doi.org/10.1029/2012JC008034.

Brown, Z. W., van Dijken, G. L., & Arrigo, K. R. (2011). A reassessment of primary produc-
tion and environmental change in the Bering Sea. Journal of Geophysical Research, 116,
C08014. http://dx.doi.org/10.1029/2010JC006766.

Coachman, L. K. (1986). Circulation, water masses, and fluxes on the southeastern Bering
Sea shelf. Continental Shelf Research, 5, 23–108.

Cota, G. F., Wang, H., & Comiso, J. C. (2004). Transformation of global satellite chlorophyll
retrievals with a regionally tuned algorithm. Remote Sensing of Environment, 90,
373–377. http://dx.doi.org/10.1016/j.rse.2004.01.005.

Coyle, K. O., Eisner, L. B., Mueter, F. J., Pinchuk, A. I., Janout, M. A., Cieciel, K. D., et al.
(2011). Climate change in the southeastern Bering Sea: impacts on pollock
stocks and implications for the oscillating control hypothesis. Fisheries
Oceanography, 20(2), 139–156.

D'Sa, Eurico J., Miller, Richard L., & McKee, Brent A. (2007). Suspended particulate
matter dynamics in coastal waters from ocean color: application to the northern
Gulf of Mexico. Geophysical Research Letters, 34(23). http://dx.doi.org/10.1029/
2007GL031192.

Gitelson, A. A., Schalles, J. F., & Hladik, C. M. (2007). Remote chlorophyll-a retrieval in tur-
bid, productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment,
109, 464–472. http://dx.doi.org/10.1016/j.rse.2007.01.016.

Gordon, H. R. (2005). Normalized water-leaving radiance: revisiting the influence of sur-
face roughness. Applied Optics, 44, 241–248.

Gordon, H. R., & Wang, M. (1994). Retrieval of water-leaving radiance and aerosol optical
thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied Optics, 33,
443–452.
Grebmeier, J. M., & Cooper, L. W. (1995). Influence of the St. Lawrence Island polynya
upon the Bering Sea benthos. Journal of Geophysical Research: Oceans (1978–2012),
100, 4439–4460.

Grebmeier, J. M., Overland, J. E., Moore, S. E., Farley, E. V., Carmack, E. C., Cooper, L. W.,
et al. (2006). A major ecosystem shift in the northern Bering Sea. Science, 311,
1461–1464. http://dx.doi.org/10.1126/science.1121365.

Hunt, G. L., Jr., Coyle, K. O., Eisner, L., Farley, E., Heintz, R., Mueter, F., et al. (2011). Climate
impacts on eastern Bering Sea food webs: a synthesis of new data and an assessment
of the oscillating control hypothesis. ICES Journal of Marine Science, 68(6), 1230–1243.
http://dx.doi.org/10.1093/icesjms/fsr036 (2011).

Hunt, G. L., Jr., & Stabeno, P. J. (2002). Climate change and the control of energy flow in the
southeastern Bering Sea. Progress in Oceanography, 55, 5–22.

Hunt, G. L., Jr., Stabeno, P., Walters, G., Sinclair, E., Brodeur, R. D., Napp, J. M., et al. (2002).
Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep
Sea Research Part II: Topical Studies in Oceanography, 49, 5821–5853.

IOCCG (2010). Atmospheric correction for remotely-sensed ocean-colour products.
In M. Wang (Ed.), Reports of International Ocean-Color Coordinating Group, No.
10. Dartmouth, Canada: IOCCG.

Jiang, L., & Wang, M. (2013). Identification of pixels with stray light and cloud shadow
contaminations in the satellite ocean color data processing. Applied Optics, 52,
6757–6770.

Kachel, N. B., Hunt, G. L., Salo, S. A., Schumacher, J. D., Stabeno, P. J., & Whitledge, T. E.
(2002). Characteristics and variability of the inner front of the southeastern
Bering Sea. Deep Sea Research Part II: Topical Studies In Oceanography, 49,
5889–5909.

Kotwicki, S., Buckley, T. W., Honkalehto, T., &Walters, G. (2005). Variation in the distribu-
tion of walleye pollock (Theragra chalcogramma) with temperature and implications
for seasonal migration. Fishery Bulletin, 103, 574–587.

Leblanc, K., Hare, C., Boyd, P., Bruland, K., Sohst, B., Pickmere, S., et al. (2005). Fe and Zn
effects on the Si cycle and diatom community structure in two contrasting high
and low-silicate HNLC areas. Deep Sea Research Part I: Oceanographic Research
Papers, 52, 1842–1864.

Lomas, M. W., Moran, S. B., Casey, J. R., Bell, D. W., Tiahlo, M., Whitefield, J., et al. (2012).
Spatial and seasonal variability of primary production on the Eastern Bering Sea shelf.
Deep Sea Research Part II: Topical Studies in Oceanography, 65–70, 126–140. http://dx.
doi.org/10.1016/j.dsr2.2012.02.010.

Mathis, J. T., Cross, J. N., Bates, N. R., Moran, S. B., Lomas, M.W., Mordy, C.W., et al. (2010).
Seasonal distribution of dissolved inorganic carbon and net community production
on the Bering Sea shelf. Biogeosciences, 7, 1769–1787. http://dx.doi.org/10.5194/bg-
7-1769-2010.

Matsuoka, A., Huot, Y., Shimada, K., Saitoh, S. I., & Babin, M. (2007). Bio-optical character-
istics of the western Arctic Ocean: implications for ocean color algorithms. Canadian
Journal of Remote Sensing, 33, 503–518.

McRoy, C., Hansell, D., Springer, A., Walsh, J., & Whitledge, T. (1987). Global maximum of
primary production in the north Bering Sea. Eos, Transactions of the American
Geophysical Union, 68, 17–27.

McRoy, P. C., Hood, D. W., Coachman, L., Walsh, J. J., & Goering, J. J. (1986). Processes and
resources of the Bering Sea shelf (PROBES): the development and accomplishments
of the project. Continental Shelf Research, 5, 5–21.

Mitchell, B. G., & Holm-Hansen, O. (1991). Bio-optical properties of Antarctic Peninsula
waters — differentiation from temperate ocean models. Deep Sea Research Part I:
Oceanographic Research Papers, 38, 1009–1028.

Moran, S. B., Lomas, M. W., Kelly, R. P., Gradinger, R., Iken, K., & Mathis, J. T. (2012).
Seasonal succession of net primary productivity, particulate organic carbon export,
and autotrophic community composition in the eastern Bering Sea. Deep Sea
Research Part II: Topical Studies in Oceanography, 65–70, 84–97. http://dx.doi.org/10.
1016/j.dsr2.2012.02.011.

Morel, A., & Gentili, B. (1996). Diffuse reflectance of oceanic waters. III. Implication of
bidirectionality for the remote-sensing problem. Applied Optics, 35, 4850–4862.

Mueter, F. J., Broms, C., Drinkwater, K. F., Friedland, K. D., Hare, J. A., Hunt, G. L., Jr., et al.
(2009). Ecosystem responses to recent oceanographic variability in high-latitude
Northern Hemisphere ecosystems. Progress in Oceanography, 81, 93–110.

Mueter, F. J., & Litzow, M. A. (2008). Sea ice retreat alters the biogeography of the Bering
Sea continental shelf. Ecological Applications, 18, 309–320.

Naik, P., D'Sa, E. J., Gomes, H. R., Goés, J. I., & Mouw, C. B. (2013). Light absorption proper-
ties of southeastern Bering Sea waters: analysis, parameterization and implications
for remote sensing. Remote Sensing of Environment, 134, 120–134.

Niebauer, H., Alexander, V., & Cooney, R. (1981). Primary production at the Eastern Bering
Sea ice edge: the physical and biological regimes. The Eastern Bering Sea Shelf:
Oceanography and Resources, 2, 763–772.

Niebauer, H. J., Bond, N. A., Yakunin, L. P., & Plotnikov, V. V. (1999). An update on the cli-
matology and sea ice of the Bering Sea. Dynamics of the Bering Sea, 29–59.

O'Reilly, J. E., Maritorena, S., Siegel, D. A., O'Brien, M. C., Toole, D., Mitchell, B. G., et al.
(2000). Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4.
SeaWiFS Postlaunch Calibration and Validation Analyses, Part, 3, 9–23.

O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., et al.
(1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical
Research, 103, 24937–24953. http://dx.doi.org/10.1029/98jc02160.

Overland, J. E., & Stabeno, P. J. (2004). Is the climate of the Bering Sea warming and affect-
ing the ecosystem? Eos, Transactions American Geophysical Union, 85, 309–312.

Ramachandran, S., & Wang, M. (2011). Near-real-time ocean color data processing using
ancillary data from the Global Forecast Systemmodel. Geoscience and Remote Sensing,
IEEE Transactions on, 49, 1485–1495.

Rho, T., & Whitledge, T. E. (2007). Characteristics of seasonal and spatial variations of pri-
mary production over the southeastern Bering Sea shelf. Continental Shelf Research,
27, 2556–2569.

http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0005
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0005
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0010
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0010
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0010
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0015
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0015
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0020
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0020
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0025
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0025
http://dx.doi.org/10.1029/2012JC008034
http://dx.doi.org/10.1029/2010JC006766
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0040
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0040
http://dx.doi.org/10.1016/j.rse.2004.01.005
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0050
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0050
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0050
http://dx.doi.org/10.1029/2007GL031192
http://dx.doi.org/10.1029/2007GL031192
http://dx.doi.org/10.1016/j.rse.2007.01.016
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0065
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0065
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0070
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0070
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0070
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0410
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0410
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0410
http://dx.doi.org/10.1126/science.1121365
http://dx.doi.org/10.1093/icesjms/fsr036
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0085
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0085
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0080
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0080
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0420
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0420
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0420
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0090
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0090
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0090
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0095
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0095
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0095
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0100
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0100
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0100
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0105
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0105
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0105
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0105
http://dx.doi.org/10.1016/j.dsr2.2012.02.010
http://dx.doi.org/10.5194/bg-7-1769-2010
http://dx.doi.org/10.5194/bg-7-1769-2010
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0120
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0120
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0120
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0125
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0125
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0125
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0130
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0130
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0130
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0135
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0135
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0135
http://dx.doi.org/10.1016/j.dsr2.2012.02.011
http://dx.doi.org/10.1016/j.dsr2.2012.02.011
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0145
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0145
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0150
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0150
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0155
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0155
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0160
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0160
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0160
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0165
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0165
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0165
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0170
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0170
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0180
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0180
http://dx.doi.org/10.1029/98jc02160
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0185
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0185
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0190
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0190
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0190
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0195
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0195
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0195


252 P. Naik et al. / Remote Sensing of Environment 163 (2015) 240–252
Salomonson, V. V., Barnes, W. L., Maymon, P. W., Montgomery, H. E., & Ostrow, H. (1989).
MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE
Transactions on Geoscience and Remote Sensing, 27, 145–153.

Sambrotto, R., Niebauer, H., Goering, J., & Iverson, R. (1986). Relationships among vertical
mixing, nitrate uptake, and phytoplankton growth during the spring bloom in the
southeast Bering Sea middle shelf. Continental Shelf Research, 5, 161–198.

Schallenberg, C., Lewis, M. R., Kelley, D. E., & Cullen, J. J. (2008). Inferred influence of nu-
trient availability on the relationship between sun-induced chlorophyll fluorescence
and incident irradiance in the Bering Sea. Journal of Geophysical Research, 113,
C07046. http://dx.doi.org/10.1029/2007jc004355.

Schumacher, J. D., & Alexander, V. (1999). Variability and influence of the physical envi-
ronment to the ecosystem in the Bering Sea. In K. O. T. R. Loughlin (Ed.), The Bering
Sea: A Summary Of Physical, Chemical And Biological Characteristics And A Synopsis Of
Research (pp. 147–160). North Pacific Marine Science Organization, PISCES, Alaska
Sea Grant Press.

Schumacher, J. D., & Stabeno, P. J. (1998). The Continental Shelf Of The Bering Sea. New
York, NY: John Wiley and Sons, Inc.

Shi, W., & Wang, M. (2007). Detection of turbid waters and absorbing aerosols for the
MODIS ocean color data processing. Remote Sensing of Environment, 110, 149–161.

Sigler, M. F., Harvey, H. R., Ashjian, C. J., Lomas, M. W., Napp, J. M., Stabeno, P. J., et al.
(2010). How does climate change affect the Bering Sea ecosystem? EOS,
Transactions, 91, 457.

Sigler, M. F., Stabeno, P. J., Eisner, L. B., Napp, J. M., & Mueter, F. J. (2014). Spring and fall
phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea,
during 1995–2011. Deep Sea Research Part II: Topical Studies in Oceanography, 109,
71–83.

Son, S., & Wang, M. (2012). Water properties in Chesapeake Bay from MODIS-Aqua mea-
surements. Remote Sensing of Environment, 123, 163–174.

Son, S., Wang, M., & Harding, L. W., Jr. (2014). Satellite-measured net primary production
in the Chesapeake Bay. Remote Sensing of Environment, 144, 109–119.

Sosik, H. M., Vernet, M., & Mitchell, A. D. (1992). A comparison of particulate absorption
properties between high- and mid-latitude surface waters. Antarctic Journal of the
United States, 27, 162–164.

Springer, A. M., & McRoy, C. P. (1993). The paradox of pelagic food webs in the northern
Bering Sea—III. Patterns of primary production. Continental Shelf Research, 13,
575–599.

Springer, A. M., McRoy, C. P., & Flint, M. V. (1996). The Bering Sea Green Belt: shelf-edge
processes and ecosystem production. Fisheries Oceanography, 5, 205–223.

Stabeno, P., Bond, N., Kachel, N., Salo, S., & Schumacher, J. (2001). On the temporal vari-
ability of the physical environment over the south-eastern Bering Sea. Fisheries
Oceanography, 10, 81–98.

Stabeno, P. J., Farley, E. V., Jr., Kachel, N. B., Moore, S., Mordy, C. W., Napp, J. M., et al.
(2012a). A comparison of the physics of the northern and southern shelves of the
eastern Bering Sea and some implications for the ecosystem. Deep Sea Research Part
II: Topical Studies in Oceanography, 65–70, 14–30. http://dx.doi.org/10.1016/j.dsr2.
2012.02.019.

Stabeno, P. J., Hunt, G. L., Jr., Napp, J.M., & Schumacher, J. D. (2006). Physical Forcing Of Eco-
system Dynamics On The Bering Sea Shelf. Cambridge, MA: Harvard University Press.

Stabeno, P. J., Kachel, N. B., Moore, S. E., Napp, J. M., Sigler, M., Yamaguchi, A., et al.
(2012b). Comparison of warm and cold years on the southeastern Bering Sea shelf
and some implications for the ecosystem. Deep Sea Research Part II: Topical Studies
in Oceanography, 65–70, 31–45. http://dx.doi.org/10.1016/j.dsr2.2012.02.020.

Stabeno, P. J., Schumacher, J. D., & Ohtani, K. (1999). The physical oceanography of the
Bering Sea. Dynamics of the Bering Sea, 1–28.

Stramska, M., Stramski, D., Kaczmarek, S., Allison, D. B., & Schwarz, J. (2006). Seasonal and
regional differentiation of bio-optical properties within the north polar Atlantic.
Journal of Geophysical Research, 111, C08003. http://dx.doi.org/10.1029/2005jc003293.

Thuillier, G., Herse, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., et al. (2003). The
solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spec-
trometer from the ATLAS and EURECA missions. Solar Physics, 214, 1–22.
Tzortziou, M., Subramaniam, A., Herman, J. R., Gallegos, C. L., Neale, P. J., & Harding, L. W.,
Jr. (2007). Remote sensing reflectance and inherent optical properties in the mid
Chesapeake Bay. Estuarine, Coastal and Shelf Science, 72(1), 16–32.

Walsh, J. J., & McRoy, C. P. (1986). Ecosystem analysis in the southeastern Bering Sea.
Continental Shelf Research, 5, 259–288.

Wang, M. (1999). A sensitivity study of the SeaWiFS atmospheric correction algorithm:
effects of spectral band variations. Remote Sensing of Environment, 67, 348–359.

Wang, M. (2005). A refinement for the Rayleigh radiance computation with variation of
the atmospheric pressure. International Journal of Remote Sensing, 26, 5651–5663.

Wang, M. (2006a). Effects of ocean surface reflectance variation with solar elevation on
normalized water-leaving radiance. Applied Optics, 45, 4122–4128.

Wang, M. (2006b). Aerosol polarization effects on atmospheric correction and aerosol re-
trievals in ocean color remote sensing. Applied Optics, 45, 8951–8963.

Wang, M. (2007). Remote sensing of the ocean contributions from ultraviolet to near-
infrared using the shortwave infrared bands: simulations. Applied Optics, 46,
1535–1547.

Wang, M., Ahn, J. -H., Jiang, L., Shi, W., Son, S., Park, Y. -J., et al. (2013a). Ocean color prod-
ucts from the Korean Geostationary Ocean Color Imager (GOCI). Optics Express, 21,
3835–3849.

Wang, J., Cota, G. F., & Ruble, D. A. (2005). Absorption and backscattering in the Beaufort
and Chukchi Seas. Journal of Geophysical Research, 110, C04014. http://dx.doi.org/10.
1029/2002jc001653.

Wang, M., & Franz, B. A. (2000). Comparing the ocean color measurements between MOS
and SeaWiFS: a vicarious intercalibration approach for MOS. Geoscience and Remote
Sensing, IEEE Transactions on, 38, 184–197.

Wang, M., Isaacman, A., Franz, B. A., & McClain, C. R. (2002). Ocean-color optical property
data derived from the Japanese Ocean Color and Temperature Scanner and the
French Polarization and Directionality of the Earth's Reflectances: a comparison
study. Applied Optics, 41, 974–990.

Wang, M., Liu, X., Tan, L., Jiang, L., Son, S., Shi, W., et al. (2013b). Impacts of VIIRS SDR per-
formance on ocean color products. Journal of Geophysical Research, [Atmospheres], 118,
10,347–310,360.

Wang, M., & Shi, W. (2006). Cloud masking for ocean color data processing in the coastal
regions. Geoscience and Remote Sensing, IEEE Transactions on, 44, 3196-3205.

Wang, M., & Shi, W. (2007). The NIR-SWIR combined atmospheric correction approach
for MODIS ocean color data processing. Optics Express, 15, 15722–15733.

Wang, M., & Shi, W. (2009). Detection of ice and mixed ice-water pixels for MODIS ocean
color data processing. Geoscience and Remote Sensing, IEEE Transactions on, 47,
2510–2518.

Wang, M., & Shi, W. (2012). Sensor noise effects of the SWIR bands on MODIS-derived
ocean color products. Geoscience and Remote Sensing, IEEE Transactions on, 50,
3280–3292.

Wang, M., Shi, W., & Jiang, L. (2012). Atmospheric correction using near-infrared bands
for satellite ocean color data processing in the turbid western Pacific region. Optics
Express, 20, 741–753.

Wang, M., Shi, W., & Tang, J. (2011). Water property monitoring and assessment for
China's inland Lake Taihu from MODIS-Aqua measurements. Remote Sensing of
Environment, 115, 841–854.

Wang, M., Son, S., & Shi, W. (2009). Evaluation of MODIS SWIR and NIR-SWIR atmospher-
ic correction algorithms using SeaBASS data. Remote Sensing of Environment, 113,
635–644.

Wang, M., Tang, J., & Shi, W. (2007). MODIS-derived ocean color products along the China
east coastal region. Geophysical Research Letters, 34.

Werdell, P. J., & Bailey, S. W. (2005). An improved in-situ bio-optical data set for ocean
color algorithm development and satellite data product validation. Remote Sensing
of Environment, 98, 122–140.

Werdell, P. J., Bailey, S., Fargion, G., Pietras, C., Knobelspiesse, K., Feldman, G., et al. (2003).
Unique data repository facilitates ocean color satellite validation. EOS, Transactions,
84. http://dx.doi.org/10.1029/2003eo380001.

http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0200
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0200
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0205
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0205
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0205
http://dx.doi.org/10.1029/2007jc004355
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0215
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0215
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0215
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0215
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0215
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0220
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0220
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0225
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0225
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0230
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0230
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0425
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0425
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0425
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0425
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0240
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0240
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0245
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0245
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0250
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0250
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0250
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0255
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0255
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0255
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0260
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0260
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0265
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0265
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0265
http://dx.doi.org/10.1016/j.dsr2.2012.02.019
http://dx.doi.org/10.1016/j.dsr2.2012.02.019
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0430
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0430
http://dx.doi.org/10.1016/j.dsr2.2012.02.020
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0285
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0285
http://dx.doi.org/10.1029/2005jc003293
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0295
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0295
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0295
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0300
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0300
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0305
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0305
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0315
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0315
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0320
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0320
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0325
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0325
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0330
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0330
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0335
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0335
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0335
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0340
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0340
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0340
http://dx.doi.org/10.1029/2002jc001653
http://dx.doi.org/10.1029/2002jc001653
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0345
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0345
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0345
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0350
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0350
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0350
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0350
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0355
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0355
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0355
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0360
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0360
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0365
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0365
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0370
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0370
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0370
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0375
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0375
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0375
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0380
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0380
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0380
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0385
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0385
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0385
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0390
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0390
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0390
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0395
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0395
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0405
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0405
http://refhub.elsevier.com/S0034-4257(15)00116-9/rf0405
http://dx.doi.org/10.1029/2003eo380001

	Bering Sea optical and biological properties from MODIS
	1. Introduction
	2. Study area
	3. Data and methods
	3.1. NOAA-MSL12 ocean color data processing system
	3.2. In situ data
	3.3. MODIS-Aqua data
	3.4. Sea ice extent, sea surface temperature, and wind speed
	3.5. Chl-a algorithms

	4. Evaluation and development of Chl-a algorithms
	4.1. MODIS-Aqua-derived and in situ-measured nLw(λ) comparisons
	4.2. MODIS-Aqua-derived and in situ-measured Chl-a comparisons
	4.3. A new blended Chl-a algorithm for the eastern Bering Sea

	5. MODIS-Aqua-derived nLw(λ) and Chl-a in the Bering Sea
	5.1. Climatology of MODIS-Aqua-derived nLw(λ)
	5.2. Climatology of MODIS-Aqua-derived Chl-a using the new blended algorithm
	5.3. Long-term trends of Chl-a in relation to the physical environment

	6. Discussions and summary
	Acknowledgments
	References


