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a b s t r a c t

Two-staged sampling is the method of sampling populations that occur naturally in groups and is common
in ecological field studies. This sampling method requires special statistical analyses that account for this
sample structure. We present and compare several analytical methods for comparing means from two-
stage sampling: (1) simple ANOVA ignoring sample structure, (2) unit means ANOVA, (3) Nested Mixed
ANOVA, (4) restricted maximum likelihood (REML) Nested Mixed analysis, and (5) REML Nested Mixed
analysis with heteroscedasticity.

We consider a fisheries survey example where the independent sampling units are subsampled (i.e.,
hauls are the sampling unit and fish are subsampled from hauls). To evaluate the five analytical methods,
we simulated 1000 samples of fish lengths subsampled from hauls in two regions with various levels
of: (1) differences between the region means, (2) unbalance among numbers of hauls within regions
and numbers of fish within hauls, and (3) heteroscedasticity. For each simulated sample, we tested for
a difference in mean lengths between regions using each of the five methods. The inappropriate, simple
ANOVA that ignored the sample structure resulted in grossly inflated Type I errors (rejecting a true
null hypothesis of no difference in the means). We labeled this analysis the Pseudoreplication ANOVA
based on the term “pseudoreplication” that describes the error of using a statistical analysis that assumes
independence among observations when in fact the measurements are correlated. The result of this error
is artificially inflated degrees of freedom, giving the illusion of having a more powerful test than the data
support.

The other four analyses performed well when the data were balanced and homoscedastic. When there

were unequal numbers of fish per haul, the REML Nested Mixed analyses and the Unit Means ANOVA
performed best. The Unequal-Variance REML Nested Mixed analysis showed clear benefit in the presence
of heteroscedasticity and unbalance in hauls. For the REML Nested Mixed analysis, we compared three
software packages, S-PLUS, SAS, and SYSTAT.

A second simulation that compared samples with varying ratios of among-haul to among-fish vari-
ance components showed that the Pseudoreplication ANOVA was only appropriate when the haul effect

yielded a p-value >0.50.

. Introduction

Two-stage sampling is a common practice in fisheries surveys,
s well as many other disciplines. In two-stage sampling, the first
tage refers to the primary sampling unit which is a cluster of
bjects, followed by a second stage where individual objects, or
ub-units, are subsampled (or completely enumerated) from the

luster (Cochran, 1977). A cluster, or primary sampling unit, is a
atural grouping of objects that may have similar attributes. Exam-
les of this include fish (sub-units) caught in a trawl net (cluster),

eaves (sub-unit) on a tree (cluster), and seabirds (sub-unit) in a
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165-7836/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.fishres.2010.09.009
Published by Elsevier B.V.

nesting colony (cluster). This sampling scheme is a form of multi-
level sampling (Lehtonen and Pahkinen, 2004) and is also referred
to as hierarchical (Raudenbush and Bryk, 2002) or nested sampling.
This paper focuses on two-stage sampling; however, the methods
discussed here also apply to three-stage or higher levels of hierar-
chical sampling. The example of two-stage sampling that we use
throughout this paper is the comparison of mean length of fish in
two geographic regions, where fish are caught in a trawl net at
several locations within each region, and then the catch at each
location is subsampled for individual length measurements.
Sampling structure must be accounted for in the statistical anal-
ysis of the resulting data, and the primary goal of this paper is
to compare alternate analytical methods. A two-stage sampling
structure requires special handling because the way the data are
collected often leads to the lack of independence among the obser-
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ations. In fisheries research, one frequently wants to measure
ttributes of individual fish in the field, for example, length, weight,
ge, stomach content, or otolith measurements. However, for most
sh populations, it is impractical to collect a random sample of

ndividual fish in one sampling stage. Instead, volumes of water are
ampled with nets catching a cluster of many fish, and some or all
f the fish in this cluster are measured. Because fish tend to occur in
roximity of other similar fish of the same species, either because of
heir schooling behavior or because the local habitat attracts simi-
ar fish, sampling a cluster of fish by a net usually results in a sample
f fish that are similar to each other. So, simply by virtue of being
aught in the same net, the fish are not independent observations,
ut rather correlated. For example, in measuring fish length, fish
end to aggregate with other fish of similar size, so measuring one
sh from a net provides information on the lengths of the other fish
aught in the same net.

A secondary goal of this paper is to show that ignoring the
ampling structure in the analysis results in erroneous conclu-
ions. Specifically, in two-stage sampling, the error of ignoring that
bjects were sampled in clusters and treating the objects as a sim-
le random sample is a form of pseudoreplication (Hurlbert, 1984),
pecifically sacrificial pseudoreplication, which has been well docu-
ented, and has been a common mistake made by researchers (e.g.,
airston, 1989; Heffner et al., 1996; Millar and Anderson, 2004).
seudoreplication has also been described in social and medical
ciences, and in education, although they may use a different term.
n clustered randomized trials, it is called a “mismatch” problem

here the units of assignment do not match the units of analysis
Hedges, 2007; Institute of Educational Sciences, 2007).

The analytical methods examined in this paper avoid pseu-
oreplication by using either aggregated data (using cluster means)
r using hierarchical (or nested) analysis. In contrast, the approach
hat is often used in the mismatch literature referenced above cor-
ects pseudoreplication by modifying the test statistics and degrees
f freedom, based on the intra-class correlation coefficient within
lusters (Hedges, 2007). We advocate methods that avoid rather
han correct for pseudoreplication in the statistical analysis.

Before proceeding, we present some necessary statistical termi-
ology. A “primary sampling unit” is defined as an element within
“sampling frame” that is sampled and is statistically independent
f other sampling units within the frame. The sampling frame is
efined as the collection of all elements (primary sampling units)
ccessible for sampling in the population of interest. In ecologi-
al sampling, the primary unit may be a quadrat from all possible
uadrats within a geographic area (frame). Examples are a parcel
f land (quadrat) in a watershed (frame), or a column of water
quadrat) in a body of water (frame). In two-stage sampling, the
rimary sampling units contain sub-units and measurements are
aken on individual sub-units. In experimental contexts, the sub-
nits within an experimental unit are sometimes referred to as
valuation units (Hurlbert and White, 1993; Kozlov and Hurlbert,
006; Urquhart, 1981). One such example is the diameters (mea-
urement) of trees (sub-unit) in a land parcel (primary sampling
nit or quadrat) where the watershed (frame) is separated into sub-
egions (factor of interest). The example in fisheries that we employ
n this paper is the lengths (measurement) of fish (sub-unit) in the

ater column (primary sampling unit or quadrat) where the body
f water (frame) is separated into sub-regions (factor). The individ-
al fish are not independent observations from the population. The

ack of independence inherent in hierarchical sampling design pre-
ludes the use of simple statistics to estimate means and variances,

nd to test hypotheses.

Hierarchical measurements occur in both field sampling and
n laboratory experiments. Manipulative experiments, as opposed
o field sampling, are analogous to two-stage sampling if the
xperimental unit contains evaluation units receiving the same
Research 107 (2011) 1–13

treatment; here, the experimental unit is analogous to the primary
sampling unit, the evaluation units are the sub-units, and the treat-
ment is analogous to the factor of interest. For example, a treatment
is applied to a tank of fish (experimental unit, the independent
observations) and measurements are made on the individual fish
in the tank (sub-units, the correlated observations). Of course more
than two stages of sampling may be applied. For example, a third
level would be where multiple observations are then made on the
individual fish, such as multiple samples of muscle tissue taken
from each fish for measurement of pollutant levels. For the sake of
simplicity, we focus on just two levels; however, our conclusions
can be extended to higher level structures.

There are several other special cases of hierarchical sampling
protocols that are sometimes confused with the multi-stage sam-
pling that we examine in this study. To avoid confusion, we list
some of these in Appendix H.

In this paper, we focus on two-stage sampling as it applies to sur-
veys of fish populations. We simulated samples based on observed
population parameters from a well-studied fish population (i.e.,
a population of juvenile walleye pollock, Theragra chalcogramma)
in the Gulf of Alaska (Kendall et al., 1996). Based on these sim-
ulated samples, we examined the probability of rejecting a true
null hypothesis (commonly labeled as a Type I error rate = ˛) and
the probability of not rejecting a false null hypothesis (commonly
labeled as a Type II error rate = ˇ) to evaluate the performance of
five different analyses for two-stage sampled data. These analy-
ses included two standard non-hierarchical analysis of variance
(ANOVA) (one using a measurement per fish and one using the
mean measurement per haul) and three analyses that correctly
incorporate a nested structure in the data using both ordinary least
squares (OLS) and restricted maximum likelihood (REML) (West et
al., 2007) methods.

Our goals were to determine: (1) the most accurate and pow-
erful analyses, (2) how different degrees of unbalance in both the
number of sub-units within sampling units and number of sam-
pling units within factor levels affect the results, (3) how unequal
variances among the factor levels affect the results, (4) what statis-
tical software packages are currently the most appropriate for this
problem, and (5) under what conditions two-stage sampling may
be ignored in the analysis, if at all. We also wanted to emphasize
the dangers of pseudoreplication, particularly in fisheries science,
even though these have already been well publicized, especially in
the context of manipulative experiments (Hurlbert, 1984; Hurlbert
and White, 1993).

2. Methods

We compared analytical methods for testing the hypothesis of
equal means for a hierarchical design, specifically two-stage sam-
pled data, where the first stage consists of primary sampling units
within a factor level, each containing many sub-units, and the sec-
ond stage consists of subsampling the sub-units. In addition to
the complexity of a hierarchical design due to the lack of inde-
pendence among the data, another layer of complexity is added
when the sampling (or experimental) units contain different num-
bers of sub-units. In the laboratory, equal sample sizes are routinely
attempted, but rarely attained. For the example of fish subsampled
from tanks, fish invariably die during the experiment or some mea-
surements are lost, resulting in unequal numbers of sub-units per
experimental unit. In addition, entire tanks might fail, resulting in

unequal numbers of experimental units per treatment level. In the
field, equal number of sub-units per sampling unit (e.g., numbers
of fish per haul where measurements are taken on individual fish)
are not expected, and can vary by several orders of magnitude, even
after adjusting for the varying amounts of water sampled (i.e., sam-
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Table 1
List of conditions that formed the 120 scenarios used to simulate sampled populations: 3 regional effects × 5 levels of haul unbalance × 4 levels of fish unbalance × 2 levels
of heteroscedasticity = 120 scenarios.

Level Region effects Mean in Region 1 Mean in Region 2

1 Equal 71.6 71.6
2 Differ by 1 SD 71.6 78.2
3 Differ by 2 SD 71.6 84.8

Haul unbalance (%) # Hauls in Region 1 # Hauls in Region 2

1 0 15 15
2 20 12 18
3 40 9 21
4 60 6 24
5 80 3 27

Fish unbalance # Hauls with # fish per haul # Hauls with # fish per haul

1 Equal 30 hauls with 25 fish each
2 Some hauls with 1 fish 24 hauls with 31 fish each 6 hauls with 1 fish each
3 Most hauls with few fish 20 hauls with 5 fish each 10 hauls with 65 fish each
4 Most hauls with many fish 20 hauls with 35 fish each 10 hauls with 5 fish each

Variability within regions SD in Region 1 SD in Region 2
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ling effort). Not only do the numbers of fish per haul vary, but
he numbers of hauls per factor level (e.g., year or region or gear)
lso often vary. Frequently, in retrospective studies, the sampling
as not originally designed for the new purpose or analysis. This
ight result in the numbers of hauls per factor level being unequal

nd a random variable because they were not fixed for each fac-
or level a priori; this is comparable to post-stratification, which
as its own issues (Cochran, 1977). Another case where the num-
ers of hauls per factor level might differ is stratified sampling;
requently the numbers of hauls are proportional to the among-
aul standard deviations or mean abundances within each stratum
e.g., Weinberg et al., 2002). This degree of unbalance in both num-
ers of hauls per region and numbers of fish per haul requires
he use of approximations for the variance components in a hier-
rchical ANOVA (Satterthwaite, 1946; Sokal and Rohlf, 1995) or
estricted maximum likelihood (REML) estimation of the variance
omponents (Laird and Ware, 1982; Pinheiro and Bates, 2000).

From here forward, we will follow the example of a fisheries
urvey where fish are subsampled from hauls; hence, instead of
eferring to sub-units and units we will refer to fish and hauls. Our
xample is a comparison of mean lengths of fish from two regions
nd the null hypothesis is that there is no difference in mean length.
auls were sampled from the sampling frame of all possible hauls
ithin each region using simple random sampling. Individual fish
ere then subsampled from the catch of fish in each haul and their

engths were measured, again using simple random sampling.
The analytical methods to test the null hypothesis were assessed

y comparing their Type I (rejecting a true hypothesis) and Type II
failing to reject a false hypothesis) error rates, and their accuracy
n estimating variance components, i.e., partitioning the variability
n the data into haul variance and fish variance. We used simu-
ated data representing a wide range of sampling and population
onditions to perform the comparisons (see below).

.1. Simulation
We based our simulations on observed lengths of juvenile wall-
ye pollock collected by midwater trawling in the Gulf of Alaska
GOA) (Wilson et al., 2006). Samples of fish lengths within each
egion were simulated from normal probability distributions using
he random normal generator within the function “rnorm” in
59 6.59
39 8.78

SPLUS, version 7.0. The GOA data yielded the parameters for the
normal distributions (Table 1). Rather than simulating a popula-
tion and then sampling from it, we simulated the samples directly
(see details in Appendix A).

We investigated 120 different scenarios (i.e., combinations of
several characteristics of populations and sampling designs) sim-
ulating 1000 samples for each scenario (Table 1). Each of the 1000
samples from all 120 scenarios consisted of two regions, 30 hauls,
and a total of 750 fish lengths. To examine Type I error rates (˛) and
the power (1 − ˇ) of the tests, we simulated samples for scenar-
ios with three values for region effect; equal mean lengths in each
region (null hypothesis is true and rejecting the null hypothesis is
a Type I error), region means differing by one standard deviation
and differing by two standard deviations (null hypothesis is false
and failing to reject the null hypothesis is a Type II error).

Of primary interest is how the various analytical methods were
affected by unequal numbers of fish per haul and unequal numbers
of hauls per region (unbalanced design), and unequal among-haul
variance between regions (heteroscedasticity). To investigate the
effect of unbalance in numbers of hauls among regions in the sam-
ple design, we created scenarios where the number of hauls in one
region differed from the other by 0% (balanced), 20% (40% of hauls
in one region vs. 60% in the other region), 40% (30% vs. 70%), 60%
(20% vs. 80%), and 80% (10% vs. 90%). In all haul allocation schemes,
the total number of hauls sampled remained the same. For unbal-
ance in numbers of fish among hauls, we looked at four allocation
schemes, (1) all hauls had an equal number of fish, (2) some hauls
had a single fish, (3) most hauls had few fish and (4) most hauls had
many fish (Table 1). In all fish allocation schemes, the total number
of fish sampled remained the same.

To examine heteroscedasticity, we examined all scenarios
described above with both equal and unequal among-haul vari-
ances for each region. For the unequal variance scenarios,
among-haul variance in one region was four times that of the other
region. One valid reason for an unbalanced design is to base the
number of samples on the variability within a factor level. Hence,

for the unequal variance, we put the greater number of hauls in the
region with the higher among-haul variance. Forming all possible
combinations of these factors led to 120 unique scenarios, i.e., 3
(region effects) × 5 (unbalance in hauls) × 4 (unbalance in fish) × 2
(heteroscedasticity) (Table 1).
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ig. 1. Schematic of three approaches to the same survey design. Dots represent
epresent hauls. Rectangles represent regions. Positions of dots, ovals, and rectangle
rom several hauls were pooled as if independent. (b) A single mean measurement

.2. Analysis comparisons

For each scenario, 1000 samples were created, and for each sam-
le, five analyses were applied to the data. These included: (1)
ne-way ANOVA using OLS where the subsampling was ignored;
hat is, all data were pooled as if independent (Pseudoreplication
NOVA), (2) one-way ANOVA using OLS where haul means were
sed as observations (Unit Means ANOVA), (3) nested ANOVA using
LS where haul was treated as a random factor and was nested
ithin region, which was fixed (OLS Nested Mixed ANOVA), (4)
ested mixed analysis using REML where haul was a random fac-
or nested within region, which was fixed (REML Nested Mixed
nalysis), and (5) nested mixed analysis using REML that allowed
or unequal among-haul variances between regions (Unequal-
ariance REML Nested Mixed analysis). For the two nested analyses
here we used REML, we applied an ANOVA-type F-test to the
EML estimates to get approximate p-values. REML is not a true
NOVA in the classical sense of partitioning the sum of squares.
ig. 1 illustrates these different approaches to the hypothesis test,
here all three nested analyses are represented in Fig. 1c because

hey differed only in computations, not in their structure.

The choice of analyses to compare was determined by differ-

nt statistical software programs, specifically S-PLUS, SAS, and
YSTAT.1 Most software packages have equivalent algorithms
or standard, balanced, equal variance ANOVAs, but methods

1 Reference to any specific commercial products, process, or service by trade
ame, trademark, manufacturer, or otherwise, does not constitute or imply its
ndorsement, recommendation, or favoring by the United States Government. The
iews and opinions of authors expressed in this paper do not necessarily state or
eflect those of the United States Government, and shall not be used for advertising
r product endorsement purposes.
n (b) x̄i represents the mean measurement averaged over fish within haul. Ovals
not meant to suggest a particular survey design, e.g., random or systematic. (a) Fish
alculated for each haul. (c) Fish were nested within each haul.

diverge when data are nested and unbalanced or heteroscedas-
tic.

Using OLS for nested mixed ANOVAs is only appropriate for bal-
anced data and requires further post-analysis to test the treatment
factor effect appropriately; this is the OLS Nested Mixed ANOVA
in our simulation. In contrast, the restricted maximum likelihood
estimation compute approximate F-tests for the treatment effects
without post-analysis manipulation (although SPLUS requires the
subsequent use of the “anova” function on the created lme object).
We included the OLS Nested Mixed ANOVA of unbalanced data to
explore the impact of data unbalance and to emphasize the advan-
tages of using REML for unbalanced data.

Different software packages have different defaults and yield
different results for the OLS Nested Mixed ANOVA, depending on
which sum of squares is used. Therefore, we compared two com-
putational methods for the OLS Nested Mixed ANOVA, Type 1 and
Type 3 sum of squares. [Unfortunately, the accepted nomenclature
in statistical literature is Types I and II errors and Types I and III (and
other) sums of squares; to avoid confusion, we distinguish between
these by using Roman numerals when referring to errors and Arabic
numerals when referring to sum of squares.] Type 1 sum of squares
is “sequential”, in that each term is added to the model sequen-
tially (order of terms in the model matters). This is recommended
for model fitting for prediction (Milliken and Johnson, 1992). Type 3
sum of squares (Yates’ weighted squares of means method, Milliken
and Johnson, 1992), or “partial” sum of squares, shows the con-
tribution of that term given that all other terms are in the model

(order does not matter). This is referred to as a “marginal” or condi-
tional significance test and is recommended for hypothesis testing
(Milliken and Johnson, 1992).

Source code for comparing analyses is available upon request
from Kathy.Mier@noaa.gov.

mailto:Kathy.Mier@noaa.gov
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.3. Type I and Type II errors

The primary criterion that we used to determine the best anal-
sis was to compare the rate that the analysis rejected a true
ypothesis (Type I error) to the specified ˛ for the hypothesis
est of no difference between region means. Type I errors were
ounted from all 1000 samples from each of the 40 scenarios where
egion means were equal and compared among the five analyses.
imilarly, Type II errors (failing to reject a false hypothesis) were
ounted from all 1000 samples from each of the scenarios where
egion means differed. The tabulated Type I and Type II error rates
ere then compared among the five analyses. For these compar-

sons, we set ˛ = 0.05.
Note that ˛ = 0.05 is an arbitrary test criterion and basing Type

and Type II error rates on arbitrary significance levels are directly
elevant only to hypothesis testing. In practice, we highly recom-
end reporting p-values as evidence in support of a hypothesis

nstead of accepting or rejecting a hypothesis based on arbitrary
ignificance levels. We use Type I and Type II error rates here for
different purpose—to evaluate the accuracy of different analy-

es, i.e., how close is the computed p-value associated with the test
tatistic from the analysis to the actual probability of observing that
alue of the statistic. Type I error rate compares the nominal prob-
bility of ˛ = 0.05 with the actual probability, which we estimated
y the observed proportion of 1000 simulations that resulted in a
robability of 0.05 or smaller. If the observed Type I error rate, i.e.,
he actual probability, is close to the nominal probability, then the
est is accurate. A more rigorous measure of the accuracy of the tests
ould be to compute the observed p-values for a variety of nominal
robabilities and then compare these to an F-distribution. However,
he probabilities that are of greatest interest are the small values,
o we restricted our comparisons to a single nominal probability,
he ˛ value of 0.05. We chose this criterion because, traditionally in
cology, as opposed to quality control in manufacturing, hypothe-
is testing has usually emphasized controlling and minimizing the
robability (˛) of incorrectly rejecting a true null hypothesis (Type
error), rather than the probability (ˇ) of failing to reject a false null
ypothesis (Type II error). However, the frequency of Type II errors
as included in this evaluation as this is indicative of the power of

he test (i.e., the ability to correctly reject a false null hypothesis, or
− ˇ).

.4. Variance components

Another measure of performance of the five analyses was to
ompare the estimated variance components from each of the
ethods to those used to simulate the sample data (Appendices
and B). That is, we specified a variance about the haul means
hen simulating them and consequently, a component of the mean

quare for haul is an estimate of this specified variance. Similarly,
e specified a variance for the individual fish lengths when sim-
lating them and the mean square error (MSE) is an estimate of
hat variance. We focused on the variance among primary sampling
nits within factor level (i.e., variance among haul means within
egion) because this is critical for testing for differences among
egion means. See Appendix B for details.

.5. Software comparisons
The three software packages (S-PLUS, SAS, and SYSTAT) differ in
ubtle computational details of the nested analyses. The software
ode for the REML Nested Mixed analyses is challenging, hence we
how it in Appendix C. The details of the software comparisons are
n Appendix D.
Research 107 (2011) 1–13 5

2.6. Pooling

We conducted a second simulation study to elucidate the
conditions that might allow pooling the two sampling stages
(and corresponding sums of squares) without compromising the
validity of the hypothesis tests. Hurlbert (2004) labeled this “test-
qualified pseudoreplication”. In other words, when is it acceptable,
if ever, to ignore the nested structure of the sampling design
and treat all the subsampled individuals (sub-units, in our exam-
ple, fish) as independent observations? Details of this pooling
simulation and brief review of the literature are in Appendix
E.

3. Results

3.1. Type I errors

The Pseudoreplication ANOVA rejected the null hypothesis
40–75% of the time when in fact it was true (Type I error)
(Fig. 2). This is 8–15 times the nominal 5% error rate. This
was true regardless of degree of unbalance in numbers of hauls
(primary units) or fish (sub-units), or unequal variances among
hauls within region (factor level). The simulations of the equal-
variance scenarios resulted in a frequency of Type I errors for the
Pseudoreplication ANOVA that was almost always at least 60%
(Fig. 2a–d). When numbers of fish were equal among hauls, all
non-pseudoreplication analyses were almost identical and pro-
duced the desired Type I error rate of 5% (Fig. 2a). A single
exception was a slightly inflated Type I error rate for the Unequal-
Variance REML Nested Mixed analysis when haul unbalance was
>40%.

Details of how the Type I error rates were impacted by unbal-
ance in numbers of haul and fish, and by unequal variances among
hauls within the two regions are presented in Appendix F and
are summarized here: (1) the Pseudoreplication ANOVA, i.e., the
ANOVA based on individual fish measurements, rejected a true
null hypothesis 8–15 times more often than the Unit Means
ANOVA and REML Nested Mixed analyses; (2) the Unit Means
ANOVA and the REML Nested Mixed analysis performed well
and nearly identically in all scenarios; and (3) the OLS Nested
Mixed ANOVA was equivalent to the Unit Means ANOVA and the
REML Nested Mixed analysis when there were equal numbers of
fish sampled in each haul, but was inaccurate when fish were
unbalanced. For the homoscedastic scenarios (equal among-haul
variances): (1) when the numbers of fish sampled from each haul
were the same, then all non-pseudoreplication analyses (except
for the Unequal-Variance REML Nested Mixed analysis) produced
the desired 5% Type I error rate, regardless of unbalance in haul;
and (2) when there were unequal numbers of fish sampled, the
REML Nested Mixed analysis and the Unit Means ANOVA per-
formed best, maintaining a 5% error rate. For the heteroscedastic
scenarios (unequal among-haul variances): (1) for all analyses,
except the Unequal-Variance REML Nested Mixed analysis, the
rate of rejecting a true null hypothesis actually decreased as the
level of unbalance in the numbers of hauls increased, but only
if the number of hauls was higher for the region with higher
variance; and (2) the Unequal-Variance REML Nested Mixed anal-
ysis maintained the desired 5% error rate until haul unbalance
was >60%.
3.2. Type II errors

As expected, the rate of failing to reject a false null hypothesis
(Type II error) decreased when the true difference between region
means increased (Figs. 3 vs. 4). Also expected, the Pseudoreplication
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abels in Figs. 2–4 are abbreviated as follows: Pseudo = Pseudoreplication ANOVA, u
um of squares (default for SPLUS), OLS Nested T3 = OLS Nested Mixed ANOVA using
ssuming equal variances, and UEVar Nested = REML Nested Mixed analysis accoun
ested lines.

NOVA had the lowest Type II error rate (5–15%, which is extremely

ow) and thus had the greatest power (Figs. 3 and 4). However,
his is a consequence of an extremely high error rate of rejecting a
rue null hypothesis (Type I error) (Fig. 2). This apparent increase
n power is spurious and will mislead the researcher into thinking
hey have a more precise estimate than they really do. Pseudorepli-
ean = Unit Means ANOVA, OLS Nested T1 = OLS Nested Mixed ANOVA using Type 1
3 sum of squares (default for SYSTAT), REML Nested = REML Nested Mixed analysis
or unequal variances. Missing lines on graphs are obscured by the REML or UEVar

cation almost always biases p-values downwards which leads to a

very high rate of rejecting the null hypothesis whether it is true or
false.

Details of how the Type II error rates were impacted by unbal-
ance in numbers of hauls and fish, and by unequal variances among
hauls within the two regions are presented in Appendix G and
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ig. 3. Observed Type II error rates (%) for 1000 simulations with equal (a–d) and
anel titles and line labels as in Fig. 2. Missing lines on graphs are obscured by the R

re summarized here: (1) the Pseudoreplication ANOVA artificially
ncreased the power of the test (reduced the rate of failing to reject

false null hypothesis); (2) when the numbers of fish sampled
rom each haul were equal and the among-haul variances were

qual, then all non-pseudoreplication analyses performed equally
ell; (3) when there were unequal numbers of fish sampled,

hen all non-pseudoreplication analyses performed well except for
he OLS Nested Mixed ANOVA using the Type 3 sum of squares;
4) the power tended to decrease with increasing unbalance in
al (e–h) among-haul variances; region means differing by one standard deviation.
or UEVar nested lines.

numbers of hauls (Type II error increased). For the heteroscedas-
tic scenarios: (1) when the numbers of hauls were unequal,
the Unequal-Variance REML Nested Mixed analysis had greater
power (smaller Type II error) than the other non-pseudoreplication

analyses, and this improvement increased as unbalance in hauls
increased; (2) when the numbers of hauls were equal, the Unequal-
Variance REML Nested Mixed analysis did not perform appreciably
better than the Unit Means ANOVA or the REML Nested Mixed
analysis.
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Fig. 4. As in Fig. 3, but for region me

.3. Variance components

Another criterion for comparing these analytical methods is
ow well the estimated variance components, as derived from
bserved mean squares, match the true variance components that

ere used to simulate the data (Appendix B, �h(r) vs. Appendix
, � ′

h(r)). Detailed results are in Appendix B. Table 2 summa-
izes the results of the analytical method comparisons based on
he Type I and Type II error rates and on estimation of variance
omponents.
iffering by two standard deviations.

3.4. Software comparisons

Details of the software comparison are in Appendix D, and are
summarized here: (1) the p-values from SAS (Kenward–Roger),
SYSTAT (containment) and S-PLUS (classical balanced) were equiv-

alent for the REML Nested Mixed analysis that assumed equal
variances among hauls; (2) the p-values from SAS were larger
than S-PLUS for the Unequal-Variance REML Nested Mixed anal-
ysis when hauls were unbalanced; (3) the only situation where
differences among the software packages impacted Type I or Type
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Table 2
Performance evaluations of five analytical methods. The performance measures are based on Type I error rates (how close to ˛ = 0.05), Type II error rates (how small), and
accuracy of estimates of variance components (how close to actual variances). Scenarios are reduced to four categories based on balance of the design: completely balanced
(=H, =F), unbalanced in hauls and balanced in fish ( /= H, =F), balanced in hauls and unbalanced in fish (=H, /= F), and completely unbalanced ( /= H, /= F), where H represents
the numbers of hauls within regions and F represents the numbers of fish within hauls.

Type I errors Type II errors Variance estimate

Balance =H,=F /= H,=F =H, /= F /= H, /= F =H,=F /= H,=F =H, /= F /= H, /= F =H,=F /= H,=F =H, /= F /= H, /= F

Analyses
Pseudoreplication ANOVA − − − − −a −a −a −a NA NA NA NA
Unit Means ANOVA + +/− + +/− + +/− + +/− +/− +/− − −
OLS Nested Mixed ANOVA, Type 1 SS + +/− − − + +/− + +/− +/− +/− +/− +/−
OLS Nested Mixed ANOVA, Type 3 SS + +/− − − + +/− − − NA NA NA NA
REML Nested Mixed Analysis + +/− + +/− + +/− + +/− +/− +/− +/− +/−
Unequal-Variance REML Nested Mixed Analysis + +/+ + +/+ + + + + + −/+ + −/+

“ es diff
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I
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3
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T
(

+” = superior; “+” = acceptable; “−” = unacceptable; “NA” = not available; “/” separat
a Even though the Pseudoreplication ANOVA gave the smallest Type II error rates

I errors was when the Unequal-Variance REML Nested Mixed
nalysis was used with extreme unbalance among hauls (>40%);
4) when hauls are unbalanced, SAS resulted in smaller Type
errors closer to the nominal 5%, but with a slightly larger

ype II error rate compared to S-PLUS. Table 3 outlines these
esults.

.5. Pooling

The simulation that examined pooling the among-haul and
ithin-haul terms in the ANOVA, thus ignoring the nested struc-

ure, resulted in a well-defined guideline for pooling. Theoretically,

f there is no haul effect, then the fish within a haul are not corre-
ated and can be treated as if they are independent observations,
ven though the fish from the pooled hauls do not comprise a
imple random sample of fish. Hence, if the collective samples
f fish adequately mimic a simple random sample, then the

able 3
a) Software procedure characteristics for the REML Nested Mixed analysis.

SAS

Name of procedure PROC MIXED

Sum of squares used Type 1
Type 3

Unequal variance option Yes

Approximation method(s) for
denominator degrees of
freedom

• Containment
• Between/Within
• Residual
• Satterthwaite
• Kenward–Roger

(b) Software procedure performances for the REML Nested Mixed analysis. EV refers to
refers to the analysis that assumes unequal variances.

SAS S-PLUS

EV UEV EV

Type I error, equal variance data Superior Acceptablea Superior
Type I error, unequal variance data Acceptablec Superior Accepta

Recommendations • Best Type I error
• Acceptable Type II error for
unequal variance data
• Most versatile and well
documented

• Accept

• Best Ty
variance

a If haul unbalance <80%.
b If haul unbalance <60%.
c But high Type II error.
erent scores for equal and unequal variance data where needed.
raded it as unacceptable because these rates were artificially reduced.

Pseudoreplication ANOVA will not result in any of the erroneous
results described in the previous sections.

The guideline for pooling is a specified value of ˛ for test-
ing the significance of the haul effect that essentially guarantees
that there truly is no haul effect. Satisfying this stringent test of
the haul effect ensures that pooling will result in the actual rate
of rejecting a true null hypothesis (Type I error) being close to
the nominal Type I error rate for testing the region effect. In all
scenarios, a 0.50 p-value for the test of no haul effect guaran-
teed a 5% Type I error rate for testing the region effect (Fig. 5).
In other words, for the variety of scenarios tested, if one wishes
the protection of an actual ˛ of 0.05 for testing region, then one

may pool hauls only when the test for a difference among hauls
yields a p-value >0.50. The trends were the same no matter what
level of unbalance in hauls for the equal-variance scenarios, and
showed only slight differences for the unequal-variance scenar-
ios. Interestingly, the more unbalanced the numbers of hauls for

S-PLUS SYSTAT

lme MIXED

Type 1 Type 3

Yes Possible with some manipulation
and only if balanced

• Classical
decomposition for
balanced multi-level
ANOVA

• Containment (factor levels < 300)
• Residual otherwise

the analysis that assumes equal variances and UEV

SYSTAT

UEV EV

Acceptableb Superior
blec Acceptablea Acceptablec

able Type I error • Unequal-Variance REML Nested Mixed analysis
unavailable for unbalanced designspe II error for unequal

data
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he unequal-variance scenarios, the smaller the p-values for haul
ffect that led to Type I error rates approaching 5%. This was
ndoubtedly due to our haul allocation where more samples were
aken in the region with the larger variance in the unbalanced
esigns.
4. Discussion

Statistical assessment of hypotheses is fraught with pitfalls and
although statistical packages have made hypothesis testing easy
to execute, they have also made it easy to mis-specify the ANOVA
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nd to misinterpret the results. To aid researchers in choosing an
ppropriate analysis in multi-stage sampling, we presented and
ompared several analyses (i.e., Pseudoreplication ANOVA, Unit
eans ANOVA, Nested Mixed ANOVA using OLS, and Nested Mixed

nalysis using REML). Other problems beyond mis-specification in
ypothesis testing include the arbitrary specification of a value for
he significance level ˛ and ignoring the power of a test. These
oncerns are discussed in greater detail in Balleurka et al. (2005),
oruch (2007), Lombardi and Hurlbert (2009), Nickerson (2000),
arkhurst (2001), and Ziliak and McCloskey (2008). We employ
ypothesis testing with the arbitrary significance level of ˛ = 0.05

n this study only as a device to compare analytical methods; our
ocus on Type I error rates (the rate of rejecting a true null hypothe-
is) is not meant to imply our endorsement of hypothesis testing as
means of assessing hypotheses. Rather than accepting or rejecting
ypotheses, we prefer to report the probability associated with a
est statistic as evidence in support of a null or alternative hypoth-
sis.

Our simulations comparing analytical methods for two-stage
ampling showed that the Pseudoreplication ANOVA performed
y far the worst of all analyses; it had the highest probability of

ndicating a difference when there was none, much greater than
he specified rate of 5%. In fact, the frequency of “detecting” a non-
xistent difference was almost always >50%. In the long run, flipping
coin, thus avoiding the inconvenience and expense of collecting
ata, would give better results! All of the alternative analyses per-
ormed equally well for data that are homoscedastic (equal variance
mong hauls within each region) and have equal numbers of fish
mong the hauls, but this balance is frequently impossible to attain.

The consequence of unbalance among numbers of fish is that it
nvalidates the OLS Nested Mixed ANOVA, i.e., the Type 1 sum of
quares for this OLS ANOVA has a high rate of Type I errors (reject-
ng a true null hypothesis), and the Type 3 sum of squares has a
igh rate of Type II errors (failing to reject a false null hypoth-
sis). Hence, if there is unbalance among numbers of fish, we
ecommend the REML Nested Mixed analysis or the Unit Means
NOVA as being both accurate and powerful. This recommenda-

ion holds regardless of the level of unbalance in hauls within
egions, making these analytical methods relatively robust to many
f the problems encountered by field studies. In addition to unbal-
nce in fish and hauls, if the data are also heteroscedastic (unequal
ariance among hauls within each region), then we recommend
he Unequal-Variance REML Nested Mixed analysis because this
educes the Type II error rates.

Comparing the REML Nested Mixed analyses to the Unit Means
NOVA, we see that each has advantages and disadvantages. The
EML Nested Mixed analyses require more sophisticated software,
hile the Unit Means ANOVA is computationally much easier. How-

ver, the Unit Means ANOVA produces a slightly biased estimate
f the standard deviation among the haul means, and provides no
stimate of the standard deviation among the fish. In spite of this
ias and the loss of information about the among-fish variability,
ur simulations show that the hypothesis test from the Unit Means
NOVA was just as accurate and powerful as the more complete and
omplex REML Nested Mixed analyses, if the data are homoscedas-
ic. This observation is consistent with Hurlbert’s assertion that

unit means analysis is just as powerful as a nested analysis
Hurlbert, 1984). The Unit Means ANOVA does not allow predictors
r factors at the sub-unit level, and other experts claim that ignor-
ng variation at multiple levels can result in biased or inefficient
stimates of between-unit variance components (Raudenbush and

ryk, 2002). Our simulations of the Unit Means ANOVA demon-
trated a bias, however it was small.

Comparing the impact of unbalance in hauls to unbalance in fish,
e found that unbalance in fish only affects the OLS Nested Mixed
NOVA, invalidating it, and minimally affects the REML Nested
Research 107 (2011) 1–13 11

Mixed analyses. In contrast, the unbalance in hauls affects all the
analyses. However, unbalance in hauls only affects the power of
the test, i.e., Type II error (failing to reject a false null hypothe-
sis) increases as the degree of unbalance in hauls increases, and
this impact is substantial only at extreme levels of unbalance. Sim-
ilarly, unbalance in hauls affects the relative performances of the
software packages (based on the comparison of p-values and error
rates) only at extreme levels of unbalance. Unbalance in numbers
of hauls within regions should be of little concern if the unbalance
is 20% or less (i.e., 40% of the hauls in one region and 60% of the
hauls in the other).

The effect of heteroscedasticity among hauls within region on
the rate of rejecting a true hypothesis (Type I error) was minimal in
our simulation, even when the among-haul variance in one region
was four times that of another. The robustness of all analyses in the
presence of extreme heteroscedasticity was reassuring. When the
numbers of hauls were balanced, the effect of unequal variances
was also minimal on the rate of failing to reject a false hypothe-
sis (Type II error). When the numbers of hauls were unbalanced,
the effect of unequal variance was to exaggerate the effect of the
unbalance on the Type II error, which was an increase in error with
an increase in haul unbalance. Unlike the Type II errors, the Type
I errors were reduced with greater haul unbalance for all analyses
except the Unequal-Variance REML Nested Mixed analysis, but this
is likely an artifact of our allocation of hauls in the two regions (i.e.,
sampling more hauls in the region with higher variance) and may
not hold in general. Also noteworthy is that the Unequal-Variance
REML Nested Mixed analysis showed little impact from unbalance
in hauls and maintained constant Type I and Type II error rates
until the unbalance in hauls was extreme. However, our unbalanced
designs may have mitigated the effect of the unequal variances
when numbers of hauls were unbalanced because more hauls were
sampled in the region with the higher variance.

Both REML Nested Mixed analyses did a good job of estimat-
ing the standard deviation among hauls. The Unit Means ANOVA
overestimated the standard deviation, but this did not impact the
accuracy of its ANOVA results. This bias was reduced when the
numbers of fish were equal among hauls. If the data are het-
eroscedastic then only the Unequal-Variance REML Nested Mixed
analysis provided estimates of multiple variances and these esti-
mates were very accurate.

Overall, SAS Proc Mixed or S-PLUS lme software routines proved
to be better than SYSTAT (version 12.0 for Windows 2004) for ana-
lyzing hierarchical designs as SYSTAT did not conveniently allow
for unequal variances for the REML Nested Mixed analysis.

In our simulations, pooling fish from different hauls within a
region did not inflate the Type I error rate if ˛ = 0.50 was used to
test the significance of the haul effect. Attaining such a high p-value
required an extremely small variance among the haul means rela-
tive to the variance among the fish within hauls. Even if the variance
of the fish is known to be more than 100 times the variance of
the hauls, the Type I errors for testing regions were much greater
than 5%, that is, pseudoreplication remained a problem until the
among-haul variance was extremely small. Hence, we recommend
against pooling haul (unit) and fish (sub-unit) variances unless the
F-test for the haul effect is not significant at ˛ = 0.50 (i.e., p ≥ 0.5).
A word of caution—this value for ˛ was an adequate criterion for
our scenarios, but might not apply to smaller sample sizes, greater
heteroscedasticity, or larger variances. A large p-value may not be
strong evidence that the haul effect is zero or close to it; instead
it might just indicate that the power of the test is low due to very

high variances or low sample sizes. In addition, some researchers
might want to interpret our pooling criterion as a test of indepen-
dence, but it is not. Our pooling criterion simply detects the point
at which the correlation among the sub-units is small enough that
it has no consequence on probability statements about the main
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ffect. If a researcher wants to avoid the complexity of using a
ested analysis and cannot or does not want to rely on this criterion

or pooling, then the Unit Means ANOVA is the only valid option.
owever, the Unit Means ANOVA might not be sufficient when
uestions being asked require multi-level analyses that incorpo-
ate covariates for units at different levels in the hierarchy (e.g.,
ickel, 2007; Hox, 2002; Goldstein, 2003; Raudenbush and Bryk,
002).

Our results were based on a very simple model – one fixed fac-
or with 2 levels and one nested random factor – but we anticipate
hat our conclusions will apply to more complicated analyses. Com-
lex analytical methods present challenges to researchers beyond
he scope of this paper, however, there are several helpful books to
uide the researcher through model specification and analysis (e.g.,
illiken and Johnson, 1992; Quinn and Keough, 2002; Raudenbush

nd Bryk, 2002; West et al., 2007). More important than the com-
lexity of the analysis is the messiness of the data, and our 120
cenarios have covered a wide range of messy data (i.e., unbal-
nced and heteroscedastic). We included the worst case scenario
f having just one fish per haul for some hauls, which we show is
learly problematic. However, biological data can have sample sizes
maller than our 30 hauls, be more unbalanced, and have variances
hat differ by more than fourfold, as did the extreme cases in our
xamples. One can only speculate whether our conclusions apply
o data with fewer samples or more extreme heteroscedasticity.

In conclusion, nested structure in a survey or experimen-
al design can rarely be ignored. We presented results from
omparisons of three hierarchical analyses that incorporated nest-
ng, a non-hierarchical ANOVA using means of aggregated data,
nd the non-hierarchical Pseudoreplication ANOVA that ignored
he nested structure. Using the inappropriate Pseudoreplication
NOVA produced seriously inflated Type I errors, i.e., it rejected
true null hypothesis more often than not; the level of inflation
ecreased with the size of the variance component from hauls
elative to the variance component from fish. This Pseudoreplica-
ion ANOVA yielded accurate Type I errors when the F-test for the
aul effect produced a p-value of at least 0.50. When the num-
ers of fish (sub-units) per haul (unit) were the same and the
ata were homoscedastic, all non-pseudoreplication analyses per-
ormed equally well. When there are unequal numbers of fish per
aul, we recommend one of the two REML Nested Mixed analyses
r a Unit Means ANOVA. The Unit Means ANOVA offers simplicity,
ut at the cost of a slightly biased estimate of the haul variance
omponent and no estimate of the within-haul variance. When the
ata were heteroscedastic (unequal among-haul variances in the
wo regions), the Unequal-Variance REML Nested Mixed analysis
howed clear benefit over other analyses that assumed equal vari-
nces, but only when the number of hauls were unbalanced in the
wo regions, and SAS is preferred to S-PLUS in this case (Systat does
ot offer an option for heteroscedastic data). Heteroscedasticity had
minimal effect if the numbers of hauls in each region were equal.
nbalance in numbers of fish greatly impacted the rate of rejecting
true hypothesis (Type I error) and failing to reject a false hypoth-
sis (Type II error) for the OLS Nested Mixed ANOVA, invalidating
t. Achieving balance in the hauls is more important than balance
n fish for all other analyses with respect to Type II error, in that
nbalance in hauls reduces the power of the hypothesis test.
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