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Abstract.—A biomass-based length-cohort analysis (LCA) was examined for its performance in estimating

total stock biomass and fishing mortality (F) for a population in equilibrium. We compared two LCA

methods—(1) a numbers-based LCA that relies on catch numbers at length as input data and (2) a new

biomass-based LCA that relies on catch biomass at length—by applying both to simulated data that generally

followed characteristics of Pacific chub mackerel Scomber japonicus in Korean waters. We investigated the

effects of using two length aggregation methods, two data simulation methods, and three expressions of

weight growth (i.e., exponential growth over the length increment of the analysis, arithmetic mean growth,

and geometric mean growth). Biomass and F were estimated from the new model and compared with those

estimated from the numbers-based LCA model. A sensitivity analysis was performed to understand which

aspect of the model parameters controlled the results. Sensitivity to estimates of terminal F was also

examined. Results of the analysis showed that the allometric power coefficient b was the most important

model parameter and that sensitivity of biomass-based LCA to terminal F was similar to that of numbers-

based LCA. Monte Carlo simulation was used to evaluate the equilibrium assumption and to calculate

confidence intervals for biomass estimates. We applied the biomass-based LCA model to data for northern

rock sole Lepidopsetta polyxystra in the eastern Bering Sea. A comparison of biomass-based LCA population

biomass estimates with northern rock sole research survey biomass estimates showed good agreement

between the two types of estimates. The biomass-based LCA described in this study is unique in that it

incorporates growth explicitly into the estimation procedure, which can be useful under data-deficient

situations when simple length composition data and estimates of total catch biomass from just one sampling

year are the only available data.

Cohort analysis and its statistical variants are the

most widely used methods for estimating the size of

fish stocks. These rely on catch in numbers at age

(Pope 1972) or catch in biomass at age (Zhang and

Sullivan 1988). These data require the use of an age–

length key to estimate age. However, sometimes age

determination for the stock of interest is difficult or

impossible to carry out, and it is often a costly

procedure.

Estimates from the Food and Agriculture Organiza-

tion of the United Nations (2005) indicate that 20% of

worldwide exploited fish populations either have no

assessment information or the available information is

not sufficiently reliable to allow an estimate of the state

of exploitation. In data-deficient situations, traditional

age-structured stock assessment models cannot be

applied. Simple methods that rely on minimal data

requirements are needed. An alternative is to use

methods that rely on length composition and catch data

(Jones 1979, 1984; Schnute and Fournier 1980; Pauly

and David 1980; Pauly 1987; Lai and Gallucci 1988;

Fournier et al. 1990; Methot 2000; Bull et al. 2005).

Some methods take advantage of both data sources

(Kirkwood 1983). One of the fundamental assumptions

of length-cohort methods that use length composition

data is that the stock is at equilibrium, with no variation

in exploitation over time and no variation in year-class

strength. Under equilibrium conditions, length compo-

sition data will be stable over time. We refer to this as

length-cohort analysis (LCA). All of these methods

produce population estimates in terms of numbers. The

catch biomass has to be converted into numeric

abundance, and LCA abundance estimates have to be

converted back into biomass, which is often more

meaningful for management purposes (i.e., total

allowable catch [TAC], or catch quotas). For example,

fisheries managers set TACs by weight in most marine

fisheries. Fishermen themselves are usually interested

in the total weight of the catch for economic reasons

and often record, report, and process catch in units of
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weight. We propose a new LCA method that directly

incorporates growth and produces population abun-

dance in units of biomass. The new LCA model that

accounts for growth is more accurate than one that does

not, and it involves fewer computational steps, as was

shown by Zhang and Sullivan (1988).

The dynamics of a fish population are determined by a

balance between (1) increases due to growth and

recruitment and (2) losses due to fishing mortality (F)

and natural mortality (M). Another argument for

examining the dynamics of fish stocks in terms of

biomass is that individual growth is an important

component of the fish population and should be included

in analyses for a more complete picture of what is

occurring in the fishery (Ricker 1975; Cushing 1981).

Growth in weight is one of the best known among the

important factors influencing changes in stock size

(Beverton and Holt 1957). Growth will drive changes in

population biomass even when mortality is zero. The

influence of growth on stock changes and the relative

accuracy with which growth can be measured suggest

that in situations where data are collected in units of

biomass and where decisions are made in terms of

biomass, the analyses should be based on a biomass-

oriented approach that incorporates growth. A key aim of

our approach is to provide a rough first approximation of

biomass in a data-limited situation. If we have sufficient

data, we do not need to apply this approach and can rely

on more standard approaches that take maximum

advantage of data collected over multiple years.

The objectives of this paper were to (1) propose a

new biomass-based LCA that directly incorporates

growth and (2) investigate the performance of the

biomass-based LCA and the more traditional numbers-

based LCA on simulated data using four contrasting

factors and applying the biomass-based LCA to actual

data for northern rock sole Lepidopsetta polyxystra in

the eastern Bering Sea. The factors included (1) use of

1- and 5-cm length interval aggregation of length

composition data, (2) data simulated by the numbers-

based and biomass-based LCAs, (3) three methods of

calculating mean weight, and (4) the performance of

the numbers-based and biomass-based LCAs in

recovering simulated data. A sensitivity analysis was

performed to evaluate the influence of model param-

eters on population biomass estimates and the sensi-

tivity of those estimates to assumed values of terminal

F (F
T
). Finally, Monte Carlo simulation was used to

evaluate the validity of the equilibrium assumption and

to provide confidence intervals for biomass estimates.

We used the Jones (1981) model to implement the

numbers-based LCA; hereafter, we refer to the

biomass-based LCA as the Zhang–Megrey model.

Methods

Biomass-based length-cohort analysis model.—We

begin the development of the biomass-based LCA

based on the time-dependent equations of Zhang and

Sullivan (1988):

Bt ¼ Btþ1 expðM � GtÞ þ Ct exp
M � Gt

2

� �
; ð1Þ

where B
t

is the biomass at time t, C
t

is the catch

biomass at time t, M is the instantaneous natural

mortality rate (per year), and G
t

is the instantaneous

rate of growth at time t. This equation is valid if the

time increment (Dt) is 1 year. When this assumption is

not valid, then a more general expression can be given

by

Bt ¼ BtþDt expðM 3 Dt � GtÞ

þ Ct exp
M 3 Dt � Gt

2

� �
; ð2Þ

where C
t

and G
t

are the catch biomass and the

instantaneous growth rate over the time it takes to

grow from length-class l
i

to length-class l
iþDl

(Dt�1).

Solving for t using the von Bertalanffy (1938) growth

equation gives

t ¼ t0 �
1

K
loge

L‘ � lt
L‘

� �
; ð3Þ

where t
0

is the theoretical age at a zero length, K is the

von Bertalanffy growth coefficient, and L
‘

is the

asymptotic length. Let Dtli represent the time needed to

grow from length-class l
i
to length-class l

iþDl
; therefore,

Dtli ¼ tliþDl
� tli ¼

1

K
loge

L‘ � li
L‘ � liþDl

� �
: ð4Þ

Substituting equation (4) into equation (2) gives

Bli ¼ BliþDl
exp

M

K
loge

L‘ � l
i

L‘ � liþDl

� �
� Gli

� �

þ Cli exp
M

2K
loge

L‘ � li
L‘ � liþDl

� �
� Gli

2

� �
: ð5Þ

Finally, we use

Wli ¼ a 3 lbi ð6Þ

to convert length to weight, and we use

Gli ¼ loge

WliþDl

Wli

� �
ð7Þ

to calculate G per length-class.

We note that equation (6) is the allometric length–
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weight relationship where a is the condition factor

(Quinn and Deriso 1999) and b is the allometric growth

parameter (Hilborn and Walters 1992). In our applica-

tion, it relates length-class l (cm) to weight W (g) in a

length-class and serves as a basis for estimating

growth.

Simulated data sets.—Two simulated data sets were

used to compare the different LCA methods. Since the

procedural steps were different in the numbers-based

versus the biomass-based simulated data sets, we

describe them in Appendix A.

Biomass-based length-cohort analysis model appli-
cation and analysis.—The biomass-based LCA model

was applied to a simulated data set using parameter

values representing growth, M, F
T
, and initial popula-

tion size chosen to generally reflect the dynamics of

Pacific chub mackerel Scomber japonicus in Korean

waters after Choi (2003). These data are given in Ta-

ble 1.

Input data were as follows: (1) 1 year of length

composition data for the catch, (2) weight of catch for

each length-class, (3) estimate of M, (4) von Berta-

lanffy growth parameters (K, t
0
, and L

‘
), (5) allometric

parameters relating length to weight (i.e., a and b), and

(6) estimates of F
T

for the longest length-class. Output

was either (1) population biomass by length-class or (2)

estimates of F by length-class.

Six steps are required to implement the biomass-

based LCA. Step 1 involves calculation of weight from

length for each length-class using the allometric weight

equation (i.e., equation 6). Step 2 is the calculation of

Gli for each length-class from weights using equation

(7). In step 3, Dt is calculated for each length-class by

using equation (4). In step 4, population biomass in the

longest length-class is estimated based on the biomass-

based catch equation and the estimate of F
T
:

Bli ¼ Cli 3
ðM þ FTÞ3 Dtli � Gli

FT 3 Dtli
ð8Þ

when the longest class is pooled or

Bli ¼ Cli

3
ðM þ FTÞ3 Dtli � Gli

F 3 Dtli 3ð1� exp �½ðM þ FTÞ3 Dtli � Gli �f gÞ
ð9Þ

when the longest class is truncated. Here, F
T

is estimated

from a direct survey or is assumed to be equal to 0.5M

for a lightly exploited stock, M for a moderately

exploited stock, or 2M for a heavily exploited stock.

Step 5 involves progressing from the longest length-

class to the smallest length-class to calculate Bli using

equation (5). In step 6, fishing mortality, Fli 3 Dtli , is

calculated as

Fli 3 Dtli ¼ loge

Bli

BliþDl

� �
�M 3 Dtli þ Gli : ð10Þ

Performance metric.—Total population biomass

was compared between the simulated data and the

results estimated from each of the two LCA methods.

Correspondence between the two sources of population

biomass was compared for each LCA model by

calculating the Nash–Sutcliffe model efficiency (ME)

metric (Nash and Sutcliffe 1970) as a performance

metric to measure differences between simulated and

estimated population biomass observations. The ME

TABLE 1.—Biological parameters used to simulate data generally conforming to the biology of the Korean common mackerel

(Choi 2003).

Parameter Description

Allometric length–weight parameters

Model: Wli ¼ albi
a ¼ 0.0018 Condition factor
b ¼ 3.567 Allometric growth parameter
Wli Weight (g) in length-class l

i
l
i

Fork length (cm) in length class l
i

Minimum length ¼ 11 cm (1-cm interval), 10 cm (5-cm interval)
Maximum length ¼ 46 cm (1-cm interval), 40 cm (5-cm interval)

von Bertalanffy growth parameters

L
‘
¼ 51.67 cm Asymptotic length

t
0
¼ �0.428 year Theoretical age at zero length

K ¼ 0.299 per year Growth coefficient

Mortalities

M ¼ 0.424 per year Natural mortality
F ¼ 0.424 per year

(from survey)
Fishing mortality

F
T
¼ 0.5 M Terminal F assuming a lightly exploited fishery

F
T
¼ M Terminal F assuming a moderately exploited fishery

F
T
¼ 2 M Terminal F assuming a heavily exploited fishery
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metric, which is commonly used to assess model

performance, provides a measure of the ratio of model

error to variability in the data. It ranges between 0 (no

correspondence) and 1 (perfect correspondence) and is

calculated as

ME ¼ 1�

XN

n¼1

ðDn �MnÞ2

XN

n¼1

ðDn � D̄Þ2
; ð11Þ

where D
n

is the data for the nth comparison, M
n

is the

corresponding model estimate, D̄ indicates the mean of

the data set for the chosen variable, and N is the total

number of model data pairs. The squaring of the error

rewards a good fit and punishes a poor fit. The ME

metric was chosen over Pearson’s product-moment

correlation coefficient because the correlation coeffi-

cient can only detect linear dependence between two

variables. The ME metric makes no a priori assump-

tions regarding the functional association between

model estimates and observed data. Performance levels

based on ME are categorized as excellent (ME . 0.65),

very good (0.50–0.65), good (0.2–0.5), and poor

(,0.2; from Maréchal 2004).

Examination of the equilibrium assumption.—We

used Monte Carlo simulation to evaluate the sensitivity

of the biomass-based LCA results to the equilibrium

assumption by turning the normally deterministic

process equation parameters into random variables.

The Monte Carlo analysis was carried out using the

eastern Bering Sea northern rock sole data. In contrast

to simply adding random sampling error (normal or

lognormal) to the LCA equations (e.g., see Chen et al.

2007), we evaluated the equilibrium assumption by

allowing the process equation parameters to vary. In

this way, the shape of the process equations changed

with each Monte Carlo sample, representing parameter

values that were not constant as required by the

equilibrium assumption.

In the Monte Carlo simulation, we let the parameters

b, K, M, and F
T

be random variables drawn from a

normal distribution. The choice of using a normal

distribution was arbitrary. The weight–length allome-

tric growth parameter b and the von Bertalanffy K
parameter influence growth. The M and F

T
parameters

influence mortality. The impact of assumed stability in

production and mortality estimates (i.e., equilibrium)

can be quantitatively evaluated using Monte Carlo

simulation. Letting b be a random variable allowed an

evaluation of the impacts of variability in weight at

length on variability in the biomass and F estimates.

The means for the random variables were set to the

nominal values given in Table 2, and SD was

determined by assuming a coefficient of variation

(CV) of 10%. Since CV(x) equals r
x
/l

x
(where r

x
is

the SD and l
x

is the mean), then the r
x

used to

generate normal random variables (rv) is given by

0.1l
x

(i.e., rv[x] ; N[l
x
, 0.1l

x
]). A Monte Carlo

solution (n ¼ 1,000) to the model was calculated by

simultaneously letting all four Monte Carlo parameters

be random variables. The average values of the 1,000

Monte Carlo samples of the population biomass were

compared with the deterministic model solution when

all parameter values were set to their nominal values.

Estimates of the 95% confidence intervals for each

estimate of biomass and F at length were also

calculated by this method.

Sensitivity analysis.—Understanding which aspect

of a model controls the model’s behavior is a

fundamental part of model development, evaluation,

and validation. Sensitivity analysis is the method most

commonly used to examine model behavior. We

performed a simple sensitivity analysis where the

parameters a, b, L
‘
, K, M, and F were each changed by

10% one at a time and the sensitivity of total

population biomass was examined; sensitivity was

measured as percent change from the base case in

which the parameters assumed their nominal values

given in Table 1. This approach is similar to the

classical measure of sensitivity proposed by Tomovic

(1963) and described by Saltelli et al. (2000) and

Cacuci et al. (2005).

We also explored the sensitivity of the model to the

assumed estimates of F
T
, similar to analyses performed

in classical virtual population analysis (Lassen and

TABLE 2.—Biological parameters of eastern Bering Sea

northern rock sole after data reported by Wilderbuer and

Nichol (2007).

Parameter Description

Allometric length–weight parameters

Model: Wli ¼ albi
a ¼ 0.00761 Condition factor
b ¼ 3.11976 Allometric growth parameter
Wli Weight (g) in length-class l

i
l
i

Fork length (cm) in length-class l
i

von Bertalanffy growth parameters

L
‘
¼ 34.2 cm Asymptotic length

t
0
¼ �0.79 year Theoretical age at zero length

K ¼ 0.26 per year Growth coefficient

Mortalities

M ¼ 0.152 per year Natural mortality
2003 F

T
¼ 0.031 Terminal fishing mortality

2004 F
T
¼ 0.044

2005 F
T
¼ 0.034

2006 F
T
¼ 0.037

2007 F
T
¼ 0.021
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Medley 2001). This analysis was performed using a 1-

cm length interval and the exponential growth model.

Application to the eastern Bering Sea stock of
northern rock sole.—We obtained catch biomass,

biological parameters, and estimates of full-recruitment

F to use as starting F
T

values for eastern Bering Sea

northern rock sole from Wilderbuer and Nichol (2007).

Research survey length composition (T. K. Wilderbuer,

National Marine Fisheries Service, personal communi-

cation) data for the years 2003–2007 were used to

calculate catch biomass by length category. Survey

vessels are chartered fishing vessels, so the collected

data should be comparable to size composition data

describing the catch of the commercial fishery. The

biomass-based LCA model was applied independently

to each year of the 5-year northern rock sole time

series. Confidence intervals for each annual abundance

estimate were obtained using the Monte Carlo

simulation procedure described previously. Population

biomass estimates from the deterministic and stochastic

biomass-based LCA model were then compared with

the survey population biomass estimates to evaluate

model performance for a stock where the actual

population biomass was relatively well known.

Results
Model Application and Analysis

A comparison of results from applying the numbers-

based Jones LCA method and the biomass-based

Zhang–Megrey LCA method to the two length

aggregation methods (1 versus 5 cm), two simulated

data sets (numbers- versus biomass-based), and three

weight growth assumptions (W1 ¼ mean for the

exponential growth; W2 ¼ arithmetic mean growth;

W3¼ geometric mean growth) is presented in Table 3.

The biomass-based Zhang–Megrey LCA outperformed

the numbers-based Jones LCA in every comparison

(i.e., higher ME values) except for the numbers-based

simulated data set using the 5-cm length aggregation.

The Zhang–Megrey model fit the biomass-based

simulated data almost perfectly in all comparisons.

A sample comparison between simulated and

estimated quantities in terms of numbers and biomass

by fork length is presented in Figure 1. This was the

general pattern between simulated and estimated

quantities in our study. We note that in all cases, the

Jones model underestimated the true simulated popu-

lation biomass values (Figure 1A, C) and the Zhang–

Megrey model also underestimated the true simulated

population biomass values (Figure 1B). However, the

Zhang–Megrey model fit perfectly when applied to the

biomass-based simulated data (Figure 1D). The Zhang–

Megrey model demonstrated less bias and was more

consistently accurate as calculated from the ME metric

except for the numbers-based simulated data using the

5-cm length aggregation (Table 3).

In every case, the estimated numbers from the LCA

methods were higher than the simulated numbers

(Figure 1), with a larger bias being demonstrated as

the methods progressed from larger to smaller length

categories. The bias was greater for the biomass-based

simulated data (Figure 1C, D). Except for the Zhang–

Megrey method applied to the biomass-based simulat-

ed data (Figure 1D), the population biomass estimates

were lower than the simulated biomass (Figure 1A–C).

Table 3 shows that the MEs for the three growth

models in two length intervals were not much different

for both the Jones and the Zhang–Megrey methods,

which indicates that the LCA models are not so

sensitive to the exponential growth assumption.

The results of the aggregation contrast (Table 3)

show that ME values for the 1-cm length aggregation

results were always higher compared with the 5-cm

length aggregation results, regardless of analysis

method (Jones versus Zhang–Megrey), source of

simulated data (numbers- versus biomass-based), and

growth model assumption (W1, W2, or W3; Table 3).

This is in agreement with the conclusions of Lai and

Gallucci (1988) and Lassen and Medley (2001).

Values of ME for results calculated from biomass-

based simulated data were always higher compared

with results from numbers-based simulated data,

regardless of length aggregation method (1 versus 5

cm), analysis method (Jones versus Zhang–Megrey), or

growth model assumption (W1, W2, or W3; Table 3).

There was no clear trend in the influence of the

growth model assumptions (W1, W2, and W3) when

compared across analysis methods (Jones versus

Zhang–Megrey), simulated data set (numbers- versus

biomass-based), and length aggregation methods (1

versus 5 cm; Table 3).

The Zhang–Megrey model did not show major

differences in performance between growth model

assumptions (W1, W2, and W3) when simulated data

were based on biomass. This was true for both length

aggregation methods (1 versus 5 cm), although the ME

for the 1-cm aggregation method was higher for every

growth model assumption (Table 3).

Sensitivity Analysis

The sensitivity analysis for all model parameters

(Table 4) indicated that the parameters most sensitive

to estimated population biomass were b of the

allometric growth equation (see equation 6) and then

L
‘

and K. The models showed a slightly higher

sensitivity to L
‘

compared with K.
There was no or little difference in the sensitivity of

the parameters between length aggregation methods (1

BIOMASS-BASED LENGTH-COHORT ANALYSIS 915



versus 5 cm), regardless of analysis method (Jones

versus Zhang–Megrey), method of simulating data

(numbers- versus biomass-based), or growth model

assumption (W1, W2, or W3). Estimated population

biomass showed a corresponding negative or positive

response to a 10% decrease or increase in the L
‘

parameter. The same was true for b and K, with

population biomass showing a corresponding positive

or negative response to a 10% change in the b
parameter. Estimated population biomass showed a

negative response to a 10% increase in the M and F
parameters and a positive response to a 10% decrease

in those parameters (Table 4).

Within a length aggregation method (1 or 5 cm),

sensitivity of the population biomass estimate differed

in relation to the source of simulated data (numbers-

versus biomass-based; Table 4). The LCA methods

were more sensitive to the b parameter in the numbers-

based simulated data compared with the biomass-based

simulated data (Figure 2).

The growth model assumptions (W1, W2, and W3)

did not influence the sensitivity of the population

biomass estimate when the variable length aggregation

method (1 versus 5 cm), source of simulated data

(numbers versus biomass), and analysis method (Jones

versus Zhang–Megrey) were held constant (Table 4).

Estimated population biomass showed a consistent

negative or positive response to a 10% decrease or

increase in the b and L
‘

parameters regardless of the

analysis model (Jones versus Zhang–Megrey), source

of simulated data (numbers- versus biomass-based),

and growth model assumption (W1, W2, or W3).

However, biomass was more sensitive to b than to L
‘
,

indicating a larger response to changes in b than to

changes in L
‘

(Table 4).

The sensitivity of the biomass-based LCA model to

different starting values of F
T

(Figure 2) showed

sensitivity patterns similar to those observed in age-

based cohort analysis (Pope 1972). Estimates of F
converged very quickly. Compared with the case where

F equals M, the largest errors (;85%) were at the

longest lengths; however, the estimates converged to

within 8% of each other after only seven length

intervals. This represents about 22% of the fork length

range (11–42 cm).

Application to Eastern Bering Sea Northern Rock Sole

In each year, the biomass-based LCA model

produced trends of population biomass and F by

length-class. Confidence intervals for each length

category are shown as error bounds around the mean

estimate. Results from the 2007 data (Figure 3) show a

typical example. Biomass increased gradually until the

length-class reached 29 cm, and then biomass declined.

On the other hand, F remained at a low level, showing

only small variations until reaching the 27-cm length-

TABLE 3.—Comparison of the Nash–Sutcliffe model efficiency (ME) metric between simulated and estimated population

biomass (1,000 metric tons) contrasted between length aggregation methods (1 versus 5 cm fork length), length-cohort analysis

methods (Jones versus Zhang–Megrey), methods of simulating data (numbers-versus biomass-based), and assumed growth

models (exponential growth [W1], arithmetic mean [W2], or geometric mean [W3]).

Length aggregation Analysis method Simulated data
Assumed

growth model ME

1-cm interval Jones Numbers-based W1 0.891
W2 0.889
W3 0.892

Biomass-based W1 0.961
W2 0.960
W3 0.961

Zhang–Megrey Numbers-based W1 0.974
W2 0.973
W3 0.974

Biomass-based W1 1.000
W2 1.000
W3 1.000

5-cm interval Jones Numbers-based W1 0.687
W2 0.560
W3 0.742

Biomass-based W1 0.865
W2 0.895
W3 0.848

Zhang–Megrey Numbers-based W1 0.458
W2 0.367
W3 0.499

Biomass-based W1 1.000
W2 1.000
W3 1.000

916 ZHANG AND MEGREY



FIGURE 1.—Results (biomass, 3 103 metric tons [mt]; number, 3 106 individuals) from length-cohort analyses using (A) the

Jones (1981) method with numbers-based simulated data; (B) the Zhang–Megrey (Z&M) method with numbers-based simulated

data; (C) the Jones method with biomass-based simulated data; and (D) the Z&M method with biomass-based simulated data.

The 1-cm fork length (FL) aggregation and the exponential growth assumption (Appendix A) were used.
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class; thereafter, F increased rapidly and exhibited

greater variation. The reason for such a steep increase

is that the dimension of F is multiplied by Dt, where Dt
is greater for larger lengths. A comparison of

population biomass estimates from the Zhang–Megrey

LCA model with the survey biomass estimates (Figure

4) showed good agreement between the two estimates.

In every year, the biomass-based LCA model and

survey biomass estimates were equivalent, and the 95%
confidence interval of the LCA model biomass

TABLE 4.—Sensitivity analysis results comparing length-cohort analysis methods (Jones [1981] versus Zhang–Megrey),

methods of simulating data (numbers- versus biomass-based), and growth model assumption (exponential growth [W1],

arithmetic mean [W2], or geometric mean [W3]). Data are presented for the 1- and 5-cm fork length aggregation methods. Table

entries represent the percent change in the estimate of total population biomass for each of the parameters (a and b from the

allometric length–weight equation; L
‘
¼ asymptotic length; K¼ von Bertalanffy growth coefficient; M¼ natural mortality; F

T
¼

terminal fishing mortality) relative to estimates calculated by using nominal values given in Table 1 (as a result of increasing or

decreasing a parameter value by 10%).

Analysis method Simulated data
Assumed

growth model

Parameters

Change a b L
‘

K M F
T

1-cm length aggregation

Jones Numbers-based W1 þ10 10.00 225.89 14.74 14.05 �7.77 �6.85
�10 �10.00 �68.96 �24.55 �14.60 8.71 7.37

W2 þ10 10.00 226.89 14.74 14.05 �7.77 �6.85
�10 �10.00 �68.95 �24.54 �14.60 8.70 7.36

W3 þ10 10.00 225.89 14.75 14.05 �7.77 �6.85
�10 �10.00 �68.96 �24.55 14.60 8.71 7.37

Biomass-based W1 þ10 0.00 36.34 14.81 14.07 �7.78 �6.85
�10 0.00 �25.80 �24.68 �14.61 8.72 7.37

W2 þ10 0.00 36.32 14.82 14.07 �7.78 �6.86
�10 0.00 �25.79 �24.68 �14.62 8.72 7.37

W3 þ10 0.00 36.35 14.81 14.06 �7.78 �6.85
�10 0.00 �25.81 �24.67 �14.61 8.72 7.37

Zhang–Megrey Numbers-based W1 þ10 10.00 227.47 37.78 17.55 �8.12 �8.14
�10 �10.00 �69.10 �31.76 �16.87 9.16 9.17

W2 þ10 10.00 227.51 37.76 17.54 �8.12 �8.13
�10 �10.00 �69.12 �31.75 �16.86 9.15 9.16

W3 þ10 10.00 227.44 37.79 17.55 �8.12 �8.14
�10 �10.00 �69.10 �31.77 �16.87 9.16 9.17

Biomass-based W1 þ10 0.00 37.00 37.86 17.56 �8.13 �8.14
�10 0.00 �26.15 �31.85 �16.87 9.16 9.17

W2 þ10 0.00 37.00 37.85 17.56 �8.13 �8.14
�10 0.00 �26.15 �31.85 �16.88 9.17 9.17

W3 þ10 0.00 37.00 37.85 17.56 �8.13 �8.14
�10 0.00 �26.15 �31.86 �16.87 9.17 9.54

5-cm length aggregation

Jones Numbers-based W1 þ10 10.00 231.89 19.11 15.28 �8.29 �9.19
�10 �10.00 �69.51 �27.43 �15.67 9.39 10.62

W2 þ10 10.00 231.89 19.10 15.28 �8.30 �9.19
�10 �10.00 �69.50 �27.43 �15.67 9.39 10.62

W3 þ10 10.00 231.89 19.11 15.28 �8.30 �9.19
�10 �10.00 �69.50 �27.43 �15.67 9.39 10.62

Biomass-based W1 þ10 0.00 34.18 20.56 15.62 �8.45 �9.29
�10 0.00 �24.58 �29.29 �15.95 9.57 10.75

W2 þ10 0.00 33.75 20.72 15.72 �8.48 �9.37
�10 0.00 �24.35 �29.49 �16.04 9.61 10.84

W3 þ10 0.00 34.40 20.48 15.57 �8.43 �9.25
�10 0.00 �24.69 �29.18 �15.89 9.55 10.70

Zhang–Megrey Numbers-based W1 þ10 10.00 231.02 30.19 15.84 �7.39 �7.52
�10 �10.00 �69.41 �27.05 �15.54 8.25 8.38

W2 þ10 10.00 232.12 29.93 15.73 �7.36 �7.44
�10 �10.00 �69.51 �26.82 �15.43 8.21 8.29

W3 þ10 10.00 230.45 30.32 15.91 �7.40 �7.56
�10 �10.00 �69.36 �27.16 �15.60 8.26 8.43

Biomass-based W1 þ10 0.00 33.84 31.62 16.16 �7.55 �7.62
�10 0.00 �24.37 �28.57 �15.80 8.43 8.51

W2 þ10 0.00 33.84 31.62 16.15 �7.55 �7.62
�10 0.00 �24.37 �28.57 �15.79 8.43 8.51

W3 þ10 0.00 33.84 31.62 16.16 �7.54 �7.62
�10 0.00 �24.36 �28.57 �15.69 8.43 8.51
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estimate overlapped the 95% confidence interval of the

survey biomass estimate. Also, in every year, the

Monte Carlo biomass estimate was slightly higher than

the deterministic estimate, although the Monte Carlo

95% confidence interval included the deterministic

estimate. These results show that the Monte Carlo LCA

biomass estimate was not different from the determin-

istic estimate. Also, the Monte Carlo LCA biomass

estimate was not different from the survey estimate

over the 5 years of data available for comparison.

Discussion

The model we present is based on the premise that a

biomass-based analysis that incorporates growth can

account for changes in population biomass resulting

from changes in individual weight in addition to

changes in number and thereby gives more accurate

estimates of population biomass. The biomass-based

LCA also facilitates the direct incorporation of data

into the analysis in terms of biomass, bypassing the

process of converting from biomass to numbers and

then converting the numbers back into biomass in order

to make management decisions based on biomass.

Finally, by including growth, this biomass-based LCA

incorporates three of the controlling forces that

influence exploited fish stocks—namely growth, M,

and F.

Worldwide, 584 fish stock groups or species groups

FIGURE 2.—Sensitivity of fishing mortality (F) estimates to different values of terminal fishing mortality (F
T
). In this example,

the analysis was performed using a natural mortality rate (M) of 0.424, a 1-cm fork length interval, and the exponential growth

model (Appendix A).

FIGURE 3.—Trends in biomass (3 103 metric tons [mt]) and fishing mortality (Fli 3Dtli ) from application of the biomass-based

length-cohort analysis method to the 2007 catch biomass and length composition data for eastern Bering Sea northern rock sole.

Monte Carlo simulation was used to estimate the variability of the biomass and fishing mortality estimates (95% confidence

interval) in each fork length (FL) class.
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are identified as having only minimal catch trends

available for monitoring resource status. Stock assess-

ment information is available for 76% (or 441) of these

groups, which produced about 80% of the total marine

catches in 2002 (FAO 2005). The remaining 143

groups are not monitored or investigated with sufficient

detail so as to provide a reliable assessment of their

state of exploitation. Thus, the remaining 20% of the

worldwide marine catches either have no assessment

information or are described by information that is not

sufficiently reliable to allow their state of exploitation

to be estimated. A similar situation exists in the USA,

where only 56% of the 230 most important fishery

stocks have adequate population assessments (Mur-

awski et al. 2008). An even smaller percentage of

important stocks are assessed in developing countries,

making this problem even more pervasive on the global

scale compared with the United States (Johannes

1998). Furthermore, information on the biomass of

species not targeted by commercial fisheries is critical

and essential for conducting contemporary ecosystem-

based fisheries management (EBFM; Zhang et al.

2009). Even though these species are not assessed, they

are critical to a full appreciation of contemporary

EBFM as they communicate aspects of important

ecological interactions and issues of biodiversity. We

often encounter difficulties in conducting stock assess-

ments for some animals that lack aging structure data

or for species targeted by small-scale fisheries. In these

circumstances, using LCA would be a reasonable tool

to estimate biomass and fishing intensity based on

length data because length data are easily obtainable in

most circumstances.

Zhang and Sullivan (1988) identified several advan-

tages to using a biomass-based analysis, especially

when catch is recorded in units of biomass and when

management decisions are made in terms of biomass.

For example, population biomass changes result from

changes in individual weight in addition to changes in

numbers. Explicitly accounting for growth provides

better estimates of population biomass over time. As

another advantage, a biomass-based analysis gives

more accurate estimates of biomass. This is true not

only because weight change is incorporated more

realistically but also because the form of the equation

results in a mathematically more accurate approxima-

tion under the same assumptions. The approximation

for the biomass-based model has a smaller error than

that from the corresponding numbers-based model

(Zhang and Sullivan 1988). Also, von Bertalanffy

growth parameters are easily available from sources

such as FishBase (Froese and Pauly 1998), and length–

weight parameters can be estimated with minimal data

requirements. Finally, the biomass-based analysis is

simpler to perform because fewer steps are required.

The biomass-based model avoids errors associated with

converting biomass into numbers and numbers back

into biomass. Such errors can be particularly important

when the average weight of the fish in the catch is a

relatively rough estimate (Rivard 1983). Also, the

FIGURE 4.—Population biomass estimates (millions of metric tons [mmt]) from application of the deterministic and Monte

Carlo biomass-based length-cohort analysis (LCA) methods to the eastern Bering Sea northern rock sole compared with actual

biomass estimates from research surveys conducted during 5 years. Vertical bars for survey biomass and Monte Carlo LCA

biomass estimates represent 95% confidence intervals. The LCA biomass variability was estimated using Monte Carlo

simulation.
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variance of the mean length or mean weight usually

increases as a cohort becomes older. Therefore,

considerable error can be introduced in population

abundance estimates simply by converting catches in

weight into numbers of fish caught and in converting

population numbers into population biomass. The

biomass LCA performs better even when there is bias

in the estimated numbers (Figure 1D). Even though the

bias increases as the method progresses towards

smaller length-groups, the higher numbers of smaller

animals do not contribute substantially to the overall

population biomass since the smaller animals weigh

less than larger animals. Under the equilibrium

assumption, the LCA model does not explicitly account

for variability in either recruitment or mortality rates.

Recruitment in the biomass-based LCA model is

implicit. The Monte Carlo results indicate that LCA

model estimates are robust to a violation of the

equilibrium assumption.

The numbers-based method fails to account for

changes in biomass that occur due to growth taking

place over the fishing season. When growth is ignored,

observed changes in biomass are implicitly assumed to

arise solely from changes in population number.

Changes in biomass due to growth that occur over

the fishing season compensate, to a degree, for losses

due to mortality. Higher biomass estimates arising from

a numbers-based LCA will be interpreted to result from

higher survivorship. Consequently, in the case where

the data are collected in terms of biomass and

converted into numbers in order to perform calcula-

tions, the estimates of biomass will be biased upwards

when back-calculated from the catch. This will be

particularly true for fast-growing species with elevated

values of G. This result is clearly shown in the formula

for the initial biomass estimate reexpressed from

equation (9). Hence, the estimated Bli may be viewed

as a decreasing function of Gli . When the growth rate is

positive, estimated Bli should be lower than that

calculated when growth is ignored (i.e., when G¼ 0).

The model sensitivity analysis was consistent with

expectations. Since the approach is based on length, we

anticipated that length parameters would be most

influential. The parameter b was the most important

since it affects results in a highly nonlinear manner

(Table 4). It is fortunate that this parameter is easily

estimated from routinely collected length and weight

data—often with very high precision when the length

composition is estimated on a fine level of resolution.

The benefit of carrying out the sensitivity analysis is

that we have quantified the influence of these

parameters on the estimate of total population biomass

In data-deficient situations, there typically is no clear

indication of the true state of the population. Our

application of the biomass-based LCA model to the

eastern Bering Sea northern rock sole, a stock for

which research surveys are conducted, indicated good

agreement between Zhang–Megrey LCA biomass

estimates and survey biomass estimates in every year

examined. The Zhang–Megrey LCA biomass estimates

were within the survey 95% confidence intervals and

were not different from the deterministic LCA biomass

estimate, indicating superior performance from very

minimal data requirements. As a possible explanation,

the better performance of the Zhang–Megrey model

may be due to poor estimation of mean weight at length

in the implementation of the Jones LCA model.

It is clear that fish growth is an important aspect of

fish population dynamics and therefore should be

incorporated into cohort analysis when catch is given in

units of biomass and when management decisions are

made in terms of biomass. Without consideration of

growth, one of the important processes influencing

changes in biomass goes undetected. The biomass-

based LCA described here is unique in that it

incorporates growth explicitly into the estimation

procedure and uses length composition data. An

additional advantage is that only a single year of

length composition data is needed to perform the

analysis.

The LCA method proposed here requires a single

length frequency sample, assuming that the population

is in equilibrium. The model is insensitive to errors in

F
T

(if F�M). The required F
T

is not usually estimated

but is assumed, and the method is known to be

insensitive to the choice of F
T

(Pope 1972); however,

the results can be sensitive to the choice of F
T

value,

especially when the cumulative rate of fishing is

relatively low compared with M.

The narrowest length interval that makes data

reasonably smooth should be used. Considerable care

should be taken with the biomass-based LCA method

when only poor growth data are available or when

individual variation in growth is high. If a terminal

length interval (‘‘plus’’ group) is required, then users

should ensure that the plus group has an initial length

(lower bound) that is less than 70% of L
‘
. This will

minimize errors in the model’s output due to errors in

estimates and variances of L
‘

and K. Any estimate of

overall F should therefore cover only the smaller size

interval representing the majority of the catch.

Estimates of biomass should not be considered as

absolute values but rather as rough estimates of

population size (Lassen and Medley 2001).

Contemporary ecosystem-based fisheries assessment

approaches (e.g., Smith et al. 2007; Zhang et al. 2009)

require information on the stock status of nontarget

species as essential input data. The biomass-based
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LCA method proposed here relies on widely available

length composition data and is suitable for data-

deficient situations. The major purpose of our approach

is to present a simple method that can provide a first

approximation of biomass in data-deficient situations.

Therefore, as long as we have sufficient data, we can

rely on more standard approaches, fully utilizing data

collected over multiple years (see Pauly 1987; Fournier

et al. 1990). Future work will extend this approach to

derive metrics relevant to contemporary fisheries

management yet will still be based on minimal data

requirements.
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Appendix A: Procedures for Generating Simulated Data

Two methods to simulate data and three growth

models were evaluated. The difference in growth

models are described below. The main difference

between the numbers-based and the biomass-based

simulated data methods are the explicit incorporation

of growth in the biomass-based method. Also, the

initialization values supplied to the two simulated data

methods are implemented independently. In our model,

we look at a short time interval when length changes

from length-class l
i

to length-class l
iþDl.

Over this time

period, growth is assumed to be exponential and is

approximated with the von Bertalanffy model when

accumulated over the entire life span.

Growth Assumption

Since we assumed exponential growth in weight

with time in our model, we examined the sensitivity of

the assumption by comparing it with other growth

assumptions. Three methods were used to represent

mean growth in the data simulations: exponential (i.e.,

assumption W1), arithmetic mean (W2), and geometric

mean (W3).

Exponential growth model

The exponential growth model is

Wliþ1
¼ Wli expðGli 3 liÞ ðA:1Þ

where i is the length-class interval and Gli is the growth

rate (Dt�1), which is assumed to be constant over the

length interval (l
i
–l

iþ1
). The average weight over the

length interval (l
i
–l

iþ1
) is given by

Wli ¼
1

liþ1 � li

Z liþ1

li

Wli expðGli 3 liÞ dl; ðA:2Þ

where l
i
¼ 0, l

iþ1
¼ 1, and

Wli ¼
Wli

Gli

expðGliÞ � 1½ �: ðA:3Þ

Arithmetic mean growth model

The arithmetic average growth for length-class l
i

is

the average over the length interval (l
i
–l

iþ1
) and is

given by

Wli ¼
Wli þWliþ1

2
: ðA:4Þ

Geometric mean growth model

The geometric average growth for length-class l
i

is

the square root of the product over the length interval

(l
i
–l

iþ1
) and is given by

Wli ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wli 3 Wliþ1

p
: ðA:5Þ

Simulated Data Sets

Two simulated data sets were used to compare the

different LCA methods. Since the procedural steps

were different in the numbers-based versus the

biomass-based simulated data sets, we describe them

here.

Numbers-based simulated data

The process used to simulate numbers-based data

began with the parameters given in Table 1 and eight

sequential steps. In step 1, for each length-class, the

weight (g) is calculated from fork length (cm) using the

allometric weight equation (equation 6). In step 2, the

growth rate G (Dt�1) is calculated from weights for

each length-class by using equation (7). Step 3 involves

calculating Dt for each length-class by using equation

(4). Step 4 is calculation of the mean weight (W, g) for

each length-class by one of the three methods described

above. In step 5, the population (in number) in the

smallest length-class is assumed to begin with 1 3 109

individuals. Step 6 involves projecting numbers into

successively larger length-classes using the exponential
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survival model:

NliþDl
¼ Nli exp½�Z 3 Dtli �; ðA:6Þ

where Z is the instantaneous total mortality rate (per

year).

In step 7, catch in numbers per length-class (CN
li

) is

calculated using the length-based catch equation:

CN
li
¼ F 3 Dtli

Z 3 Dtli
3 Nli ½1� expð�Z 3 DtliÞ�: ðA:7Þ

Step 8 is the calculation of catch in biomass (1,000

metric tons) per length–class (CB
li
) by multiplying the

catch in numbers by the mean weight from step 4:

CB
li
¼ CN

li
3 Wli : ðA:8Þ

Catch in numbers at length is used as input data to

the Jones (1981) LCA model; catch in biomass at

length (1,000 metric tons) is used as input data to the

Zhang–Megrey LCA model.

Biomass-based simulated data

The process used to simulate biomass-based data

began with the parameters given in Table 1 and eight

sequential steps. Steps 1–4 are the same as for the

numbers-based simulated data. The main difference in

this method relative to the method used for the

numbers-based data is the explicit incorporation of

growth.

In step 5, the population biomass in the smallest

length-class is assumed to begin at 1 3 109 metric tons.

Step 6 involves projecting biomass into successively

larger length-classes using the biomass-based expo-

nential survival model:

BliþDl
¼ Bli exp½�ðZli 3 Dtli � GliÞ�: ðA:9Þ

In step 7, catch in biomass (CB
li
; 1,000 metric tons) is

calculated for each length-class by using the biomass-

based catch equation:

CB
li
¼ F 3 Dtli

Z 3 Dtli � Gli

3 Bli

3 1� exp½�ðZ 3 Dtli � GliÞ�f g: ðA:10Þ

Step 8 is the calculation of catch in numbers (CN
li

) for

each length-class by dividing the catch in biomass by

the mean weight from step 4:

CN
li
¼

CB
li

Wli

: ðA:11Þ

As in the previous section, catch in numbers at

length is used as input data to the Jones model and

catch in biomass at length (1,000 metric tons) is used as

input to the Zhang–Megrey model.
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