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Abstract: Multiple linear regressions (MLRs), generalized additive models (GAMs), and artificial neural networks (ANNs)
were compared as methods to forecast recruitment of Gulf of Alaska walleye pollock (Theragra chalcogramma). Each
model, based on a conceptual model, was applied to a 41-year time series of recruitment, spawner biomass, and environ-
mental covariates. A subset of the available time series, an in-sample data set consisting of 35 of the 41 data points, was
used to fit an environment-dependent recruitment model. Influential covariates were identified through statistical variable
selection methods to build the best explanatory recruitment model. An out-of-sample set of six data points was retained
for model validation. We tested each model’s ability to forecast recruitment by applying them to an out-of-sample data
set. For a more robust evaluation of forecast accuracy, models were tested with Monte Carlo resampling trials. The ANNs
outperformed the other techniques during the model fitting process. For forecasting, the ANNs were not statistically differ-
ent from MLRs or GAMs. The results indicated that more complex models tend to be more susceptible to an overparame-
terization problem. The procedures described in this study show promise for building and testing recruitment forecasting
models for other fish species.

Résumé : Nous avons comparé les régressions linéaires multiples (MLRs), les modèles additifs généralisés (GAMs) et les
modèles statistiques de réseaux de neurones artificiels (ANNs) comme méthodes pour prédire le recrutement de la goberge
de l’Alaska (Theragra chalcogramma) dans le golfe de l’Alaska. Nous avons appliqué chaque modèle, basé sur un modèle
conceptuel, à une série chronologique de 41 années de données sur le recrutement, la biomasse des reproducteurs et les co-
variables de l’environnement. Un sous-ensemble de la série chronologique disponible, soit un ensemble de données prove-
nant de l’échantillon consistant en 35 des 41 points de données, a servi à ajuster un modèle de recrutement dépendant de
l’environnement. Des méthodes statistiques de sélection des variables ont permis d’identifier les covariables les plus influ-
entes afin de bâtir le meilleur modèle explicatif du recrutement. Un ensemble de six points de données hors de l’échan-
tillon a été gardé pour la validation des modèles. Nous avons testé la capacité de chaque modèle à prédire le recrutement
en appliquant le modèle à un ensemble de données hors de l’échantillon. Pour une évaluation plus robuste de la justesse
de la prédiction, nous avons testé les modèles avec des essais de rééchantillonnage de Monte Carlo. Les ANNs surpassent
les autres techniques durant le processus d’ajustement des modèles. Pour ce qui est de la prédiction, les ANNs ne sont pas
statistiquement différents des MLRs et des GAMs. Les résultats indiquent que les modèles plus complexes ont plus tend-
ance à souffrir de problèmes de surparamétrisation. Les procédures que nous décrivons sont prometteuses pour l’élabo-
ration et l’ajustement des modèles de prédiction du recrutement chez d’autres espèces de poissons.

[Traduit par la Rédaction]

Introduction

Society is challenged to steward the exploitation of ma-
rine resources effectively for the health of the planet. Fore-
casting recruitment is a commonly recognized, but elusive,
goal for the sustainable stewardship and rational manage-

ment of exploited fish populations. Reliable estimation of
recruitment is critically important to assessment of the ex-
ploitable segment of those populations (Needle 2001). Fur-
thermore, industry constantly must prepare for changes in
abundance, age structure, and spatial distribution of com-
mercial species to optimize economic return and maintain a
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sustainable resource. Managers must make meaningful and
effective decisions based on assumptions of the future state
of fishery resources. Although the need for accurate recruit-
ment forecasts is great, there are few studies that have fo-
cused on this specific problem. An Aquatic Science and
Fisheries Abstracts literature search returned only 22 peer-
reviewed papers with titles containing the words ‘‘re-
cruitment’’ and either ‘‘prediction’’ or ‘‘forecast’’ (date of
search: 4 April 2007). This is a surprisingly small number
of papers given the fact that the estimation of recruitment
has been a persistent preoccupation of fisheries scientists
for more than a century (Cushing 1988; Kendall and Duker
1998).

One source of frustration in predicting recruitment is the
seemingly unexplainable complex relationship between fish
and their environment (Bailey et al. 2005; Ciannelli et al.
2007). All recruitment models assume that recruitment in-
evitably will be reduced if there is insufficient spawning
biomass (Beverton and Holt 1957; Ricker 1975; Schnute
1985). Often, however, spawner–recruit models fail to ad-
equately reveal processes and mechanisms affecting recruit-
ment and, hence, are consequently unable to predict future
recruitment with satisfactory precision. The environmental
factors that influence recruitment in a complex, nonlinear,
dynamical system often obscure the relationship between
spawners and recruits to such a degree that any patterns or
relationships, even if present, are not easily identified
(Bailey et al. 2005). Furthermore, imprecise measurements
of recruitment, parental stock, and environmental factors
add additional uncertainty (Walters and Ludwig 1981). We
still have only a limited understanding of the recruitment
process despite our best efforts to understand recruitment
dynamics because of the complex, nonlinear interactions
within and between physical and biological variables.

Another obstacle to forecasting recruitment is the lack of
established protocols for selecting appropriate statistical ap-
proaches. Traditional linear modeling approaches such as
multiple linear regressions (MLRs) often have been used to
relate external variables to recruitment variability. With the
development of powerful personal computers, newer model-
ing techniques such as artificial neural networks (ANNs)
and generalized additive models (GAMs) also have been
tried. These new modeling techniques use nonparametric ap-
proaches that do not require inflexible assumptions, as op-
posed to MLRs that require restrictive assumptions such as
functional linear relationships between the variables (Chen
and Ware 1999; Huse and Ottersen 2003). Megrey et al.
(2005) recently explored the performance of MLRs, GAMs,
and ANNs to forecast recruitment from simulated data with
known properties, but their conclusions were based on one
random realization of simulated data.

The goal of this study is to build on the work of Megrey
et al. (2005). We intend to advance that exploration by using
the same three forecasting techniques and then applying a
robust statistical methodology to evaluate forecasting accu-
racy. The objectives of this paper are (i) to build recruitment
forecasting models using three different statistical methods,
two different response variables, and two model constraints,
(ii) to fit the models to an in-sample data set of environmen-
tal covariates thought to influence recruitment variability of
Gulf of Alaska (GOA) walleye pollock (Theragra chalcog-

ramma, hereafter referred to as pollock), (iii) to use the
best-fit models to forecast recruitment by applying them to
portions of the time series reserved according to a Monte
Carlo resampling strategy, (iv) to compare the forecast per-
formance of the models, and (v) to recommend forecast
modeling techniques based on those comparisons.

Materials and methods

Data sets
We modeled age-2 GOA pollock abundance as a function

of spawning biomass and a suite of environmental covari-
ates thought to be influential to recruitment success. At the
time of this analysis, estimates of annual recruitment (REC)
and spawning stock biomass (SSB) from the annual age-
structured stock assessment model (Dorn et al. 2003) were
available for the period 1961–2003. We assumed that the
recruitment series is not serially correlated or that it is
weakly correlated at an ignorable level. This assumption
was required because none of the statistical methods used
in this study is designed to deal with serial correlations.
Also, tests using Monte Carlo resampling are not plausible
if there is strong serial correlation. Although no serial corre-
lation was assumed, the degree of serial correlation was ex-
amined by employing the sample autocorrelation function
on the model residuals at various time lags (1 to 10). The
significance of the autocorrelation was assessed with the ap-
proximate 95% confidence interval (Brockwell and Davis
2003).

A suite of environmental data was also available for the
same period. The recruitment data were lagged 2 years to
coincide with SSB and environmental covariates for the
birth year, resulting in time series of 41 annual data points
spanning the year classes 1961–2001.

Environmental covariates were selected based on a con-
ceptual model of GOA pollock recruitment (Megrey et al.
1996) and the results of an exploratory analysis of the rela-
tionship between GOA recruitment success and the physical
environment (Megrey et al. 1995). That analysis showed that
age-2 recruitment abundance is closely related to precipita-
tion, atmospheric sea-level pressure gradient, and local
wind mixing. Guided by this analysis, we chose a subset of
these variables as covariates, including local physical pa-
rameters, climate-scale indices, and SSB (the only biological
variable; variables considered for this study are given in Ta-
ble 1).

Environmental covariates considered include sea surface
temperature (SST), wind mixing energy (WMX), freshwater
runoff index (FRN), Northeast Pacific pressure index (NEP),
Pacific Decadal Oscillation index (PDO), and Southern Os-
cillation index (SOI). The environmental data series were
obtained as monthly averages. SST and WMX are estimated
values, centered on the exit of Shelikof Strait (568N,
1568W) and derived from the National Center for Environ-
mental Prediction (NCEP) data reanalysis. FRN is an index
for integrated GOA coastal freshwater discharge anomaly
(Royer 1982). NEP is the sea-level pressure difference be-
tween points over the north-central Pacific and near Reno,
Nevada (Emery and Hamilton 1985). PDO is the first princi-
pal component of the North Pacific monthly SST variability,
poleward of 208N; it describes the decadal variability in
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cool and warm phases of Pacific environmental regimes
(Mantua and Hare 2002). SOI, the anomaly in the sea-level
pressure difference between Tahiti (188S, 1508W) and Dar-
win (108S, 1308E), is a good indicator of tropical variations
related to El Niño events (Trenberth 1984). Although bio-
logical variables such as predation and prey availability are
known to affect recruitment success, the only biological var-
iable considered for the forecasting models in this study was
SSB. Other available biological time series were incomplete,
short in length, and did not overlap the recruitment time ser-
ies enough to make them useful.

Environmental covariates considered in this study have
different temporal and spatial scales of influence. Some are
regional and others are basin scale in their spatial scope.
Similarly, in the temporal domain, some factors are impor-
tant in establishing optimum conditions prior to spawning,
some during spawning and larval life stages, and some dur-
ing early juvenile stages. In building recruitment forecast
models, we averaged the monthly environmental covariate
data over 3-month periods considered to be important to pol-
lock recruitment. These correspond to pollock prespawning
(January–March), spawning (April–June), and early juvenile
(July–September) life history periods. We elected to ignore
the period from October through December, by which time
young-of-the-year pollock are independent free-swimmers
and, assuming they have reached critical size to survive the
upcoming winter, are much less susceptible to the environ-
mental covariates we chose (Bailey 1989). We treated the
average of each 3-month period for each environmental co-
variate as a separate explanatory variable for the model.
Thus, there were 19 covariates, including SSB, available for
analysis.

For the purpose of identification and to clarify the presen-
tation, we added to the end of each environmental covari-
ate’s acronym a number (1, 2, or 3) that describes the
temporal influence of the environmental covariate on the
life history period (prespawning, spawning, or early juve-
nile, respectively). All environmental time series covariates
were normalized ((x – mx) /sx) prior to analysis (Fig. 1).

The recruitment forecast of GOA pollock is currently
made at five categorically ordered levels of recruitment
strengths (weak to strong) based on a weighted scoring of
the assemblage of different biological and physical informa-
tion in the region (Dorn et al. 2003). The recruitment fore-
cast is used to project the future stock status, consequently
to recommend the fishing quota to the fisheries managers.

This is the reason that recruitment forecasts remain a vital
information component required by resource management
decision-makers dealing with exploited marine ecosystems.
In this study, the recruitment forecast is modeled and tested
using an abundance scale, rather than subjective ordinal
scale, thus providing more information to fisheries manag-
ers.

Environment-dependent spawner–recruit model
We adopted the generalized Ricker (1975) spawner–

recruit model to specify recruitment as a function of
spawning biomass and other environmental covariates as
generalized by Hilborn and Walters (1992) to include envi-
ronmental covariates.

ð1Þ REC ¼ aSSBexpð�bSSBþ g1X1 þ g2X2 þ . . .

þgmXmÞ expðuÞ
where REC is age-2 recruitment (billions of recruits), SSB
is the spawning stock biomass (1000 tonnes (t)), Xm is an
influential environmental covariate, m is the number of en-
vironmental covariates, a, b, and gm are model parameters
to be estimated, and u is a normally distributed random er-
ror (*N(0, s 2)).

A natural logarithmic transformation of eq. 1 normalizes
the multiplicative lognormal error structure to an additive
normal error and linearizes the relationship between recruit-
ment and environmental covariates. From this point on,
‘‘log’’ refers to the natural logarithm ‘‘ln’’.

ð2Þ logðRECÞ ¼ logðaÞ þ logðSSBÞ � bSSBþ g1X1

þg2X2 þ . . .þ gmXm þ u

Equation 2 is further simplified by moving log(SSB) to
the left side of the equation. This models log(survival) as a
function of a mean response and the influence of the envi-
ronmental covariates.

ð3Þ logðREC=SSBÞ ¼ logðaÞ � bSSBþ g1X1 þ g2X2

þ . . .þ gmXm þ u

It should be noted that log(SSB) in eq. 2 does not have an
associated parameter. Thus, representing log(survival), i.e.,
log(REC/SSB), as the response variable as in eq. 3 is a the-
oretically preferable form of modeling recruitment in a lin-
ear regression setting (Ricker 1975). However, if we do not
restrict ourselves to the theoretical Ricker model, we can set

Table 1. Recruitment and explanatory environmental covariates used in this study.

Variable Acronym Data source
Age-2 recruitment REC Stock assessment estimate (Dorn et al. 2003)
Spawning stock biomass SSB Stock assessment estimate (Dorn et al. 2003)
Sea surface temperature SST NOAA-NCEP (www.ncep.noaa.gov)
Wind mixing WMX NOAA-NCEP (www.ncep.noaa.gov)
Northeast Pacific pressure index NEP NOAA-PMEL, extended from Emery and Hamilton (1985)
Freshwater runoff index FRN Extended from Royer (1982)
Pacific Decadal Oscillation index PDO JISAO (jisao.washington.edu/pdo)
Southern Oscillation index SOI NOAA-CPC (www.cpc.noaa.gov)

Note: The descriptions of the variables are given in the text. NOAA, National Oceanic and Atmospheric Administration,
US; NCEP, National Center for Environmental Prediction; PMEL, Pacific Marine Environmental Laboratory; JISAO, Joint
Institute for the Study of the Atmosphere and Ocean, University of Washington; CPC, Climate Prediction Center.
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up a log(recruitment) model as a function of SSB and other
environmental covariates as follows:

ð4Þ logðRECÞ ¼ logðaÞ0 � bSSBþ g1X1 þ g2X2 þ . . .

þgmXm þ u

For developing our recruitment forecast models, we con-

sidered two different types of response (dependent) varia-
bles: log(recruitment) (eq. 4) and log(survival) (eq. 3).

Statistical methods
We examined three statistical modeling methods (MLRs,

GAMs, ANNs) to evaluate their performance at data fitting

Fig. 1. Gulf of Alaska (GOA) walleye pollock (Theragra chalcogramma) recruitment (open circle, billions) and spawning biomass (shaded
square, million tonnes) time series, along with time series of normalized environmental covariates used for building GOA pollock recruit-
ment forecasting models in this study. The environmental covariates are 3-month averages of monthly data corresponding to pollock
spawning life history: Q1, prespawning, January–March; Q2, spawning, April–June; Q3, early juvenile, July–September.
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and forecasting recruitment. We chose these modeling tech-
niques because GAMs and ANNs have recently received
more attention from fisheries scientists as alternatives to tra-
ditional linear regression methods for recruitment data anal-
ysis and recruitment forecasts (Chen and Ware 1999;
Daskalov 1999; Huse and Ottersen 2003). These statistical
modeling techniques were used to fit the GOA age-2 pollock
recruitment data with SSB and the environmental covariates
using models of eqs. 3 and 4.

MLR is a standard way of fitting a linearized form of
environment-dependent spawner–recruit models (Hilborn
and Walters 1992). However, MLR requires restrictive a pri-
ori assumptions of linearity in the functional relationships
between the response and the explanatory variables, normal-
ity of the underlying error distribution, and homogeneity of
variances (Draper and Smith 1998). Because of the highly
variable nature of fish recruitment data, it is often difficult
to justify linear regression as the appropriate method for the
analyses. Despite these shortcomings, linear regression mod-
els are still widely used in the analyses of fish recruitment
(Wespestad et al. 2000; Rosenkranz et al. 2001; Meuter et
al. 2006). The merits of linear regression arise from the fact
that the method is conceptually straightforward and has a
solid theoretical background for parameter estimation and
hypotheses tests.

The GAMs model the data nonparametrically by using
scatterplot data smoothers, allowing the GAMs to suggest
the functional relationship between response and explanatory
variables (Hastie and Tibshirani 1990; Chambers and Hastie
1992) without the need for restrictive a priori assumptions
on the functional relationship between the two. There are a
number of examples of GAMs used in fisheries applications
(e.g., Swartzman et al. 1995; Beare and Reid 2002; Porter et
al. 2005). The usefulness of GAMs in the modeling of
environment-dependent spawner–recruit models is demon-
strated by the work of Jacobson and MacCall (1995), Daska-
lov (1999), and Cardinale and Arrhenius (2000). GAMs
assume that each explanatory variable affects the response
variable in a smooth, continuous way. The amount of
smoothing is determined by the number of degrees of free-
dom applied to the smoothing spline function applied to
each explanatory variable. We used cubic spline scatterplot
smoothers in our application of the GAMs to the recruitment
forecast problem.

ANNs are machine-learning algorithms designed to mimic
the operation of neurons in the human brain and its process-
ing of input signals for learning and recognizing complex
patterns. The human brain is a highly complex and nonlinear
information-processing system with interconnected neurons,
functioning like a set of numerous parallel computers work-
ing simultaneously. Like GAMs, ANNs are useful in situa-
tions where there is little information about the
mathematical form of the relationship between response and
explanatory variables or when the system under study is
highly nonlinear, conditions that almost perfectly describe
the typical situation of trying to fit fisheries recruitment
models. However, ANNs are often criticized or referred to
as black boxes because the parameters in the fitted networks
lack biological interpretation. The use of ANNs in aquatic
and fisheries science has been growing (e.g., Akoi and Ko-
matsu 1997; Huse and Gjøsæter 1999; Laë et al. 1999), and

the approach has demonstrated promising utility for recruit-
ment forecasts (e.g., Chen and Ware 1999; Huse and Ot-
tersen 2003). There are many different neural network
architectures with different training algorithms. For this
study, we employed a simple but widely used ANN, a multi-
layer feed-forward neural network with a back-propagation
learning algorithm (Ripley 1996; Venables and Ripley
2002).

The fundamental difference between ANNs and conven-
tional parametric statistical methods such as nonlinear re-
gressions or multiple linear regressions is in the existence
of hidden neurons in the hidden layer for ANNs. ANNs
with no hidden neurons are essentially identical to nonlinear
regression or linear regression (Sarle 1994). The number of
hidden neurons in ANNs affects the accuracy of the models’
fit to the data. In general, an ANN model with more hidden
neurons (i.e., more parameters) will fit the data better, simi-
lar to using higher-order polynomial equations to describe
curvilinear response functions. ANN models are so flexible
that they can approximate virtually any function to any de-
gree of accuracy given sufficient hidden neurons. However,
similar to common curve-fitting techniques, if there are too
many hidden neurons in the network, the model tends to fit
to the noise and not the underlying patterns in the data. Con-
sequently, forecasting performance for unseen data de-
creases because of overparameterization, and the statistical
model’s degrees of freedom quickly disappear.

Fitting and forecasting performance of ANNs are often a
zero-sum game requiring a careful balancing act. With the
overparameterization problem always looming, there are no
established protocols for determining the optimum number
of hidden neurons to balance fitting performance with fore-
casting performance. Yet, because of the heavy influence of
hidden neurons on the fitting and forecasting performance of
an ANN model, it still remains clear that it is critically im-
portant to carefully decide the number of hidden neurons to
be used in ANN models. Because of these problems, select-
ing the number of hidden neurons is usually a difficult sub-
jective decision made by the analyst. We offer a possible
objective solution to this dilemma by proposing a systematic
increase in hidden neurons and a simultaneous evaluation of
the fitting and forecasting performance of the model.

Model development
Model development entailed selection of the Xm environ-

mental covariates and estimation of the model parameters to
best fit the recruitment time series. For initial development,
we used the first 35 points of the recruitment and covariate
time series to establish their functional relationship. Later, in
a more robust simulation, we used the same environmental
covariates selected in initial model development, but pro-
vided 300 separate recruitment realizations, as described
later in the Monte Carlo resampling section, to tune the co-
variate coefficients.

Various statistical procedures are available for selecting
explanatory variables for each of the three types of models.
Generally, including more covariates in a model improves
the fit. However, good performance in model fitting does
not always result in good performance in forecasting unseen
data. Often, the models forecasting performance is dimin-
ished by including too many covariates. This is called over-
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parameterization or overfit in statistics (Burnham and An-
derson 2002), and it should be avoided in model develop-
ment. Redundant and unnecessary explanatory variables
should also be avoided because they produce less precise in-
ferences about estimated coefficients of the covariates. For
these reasons, we adopted the ‘‘principle of parsimony’’ (the
scientific principle that things are usually connected or be-
have in the simplest or most economical way) in building
the final version of each statistical model (Burnham and An-
derson 2002).

To determine the best MLR model, we used four proce-
dures to select covariates: stepwise selection, Mallow’s Cp
statistic, Akaike’s information criteria (AIC), and Swartz’s
Bayesian information criteria (BIC). Stepwise procedures al-
low variables to be added or deleted from the model at each
step at a given level of statistical significance (Rawlings et
al. 2005). Mallow’s Cp, AIC, and BIC include a penalty
term in the formulation of their objective function that is a
positive function of the number of parameters in the model.
These metrics use this technique to avoid or minimize over-
parameterization (Mallows 1973; Schwarz 1978; Akaike
1981). Each procedure returns a ranked order of candidate
models. We examined the top five model candidates from
each selection procedure and chose the final MLR model
that ranked the highest across the four procedures.

Selection of the final GAM model was based on the AIC
criterion (Chambers and Hastie 1992). Suitable GAM mod-
els were identified by a stepwise selection procedure in
which the smoothing function for each explanatory variable
was started with one degree of freedom and incremented to
a given maximum number of degrees of freedom. We used a
maximum of four degrees of freedom for each covariate dur-
ing the selection procedure.

There is no formal way of selecting explanatory variables
for ANN models. The ANN complex model structure con-
tains input, hidden, and output neurons interconnected in a
network structure, thus the number of parameters increases
nonlinearily as a function of the number of hidden neurons,
and these models quickly exhaust degrees of freedom as
more covariates are introduced. This is an important consid-
eration in data-limited situations, such as this study with its
short recruitment time series. We used the same covariates
selected by the final MLR model in the ANN model, be-
cause MLRs are equivalent to ANNs with no hidden neu-
rons. Given the set of explanatory variables, we determined
the optimum number of hidden neurons by fitting the data
set with a variable range of hidden neurons, ranging from
one to four. Each ANN model can converge to a different
result due to the effect of random initialization of weights.
To overcome this difficulty when we were searching for the
optimum number of hidden neurons, we used 100 different
runs with different random seeds and averaged the results
as our output for the final ANN model.

In the variable selection process, it is difficult to establish
if recruitment forecasting models should contain SSB as a
covariate in the models of eqs. 3 and 4. Often SSB is in-
cluded even when it is not statistically significant, because
some argue that including SSB in the model is necessary
for biological realism — there can be no recruits without
spawners. To address this uncertainty, we examined the out-
come of each final model under two conditions. In the first,

we accepted covariates chosen by the statistical selection
procedures. Under the second condition, we ‘‘constrained’’
SSB to be included as an explanatory variable throughout
the selection process. This second set of models presumes
significant density dependence on recruitment. Constraining
SSB to be included in the model during the variable selec-
tion procedure can result in a different suite of covariates
for the final model than in the nonconstrained condition.

In all, 12 different model configurations were developed
based on statistical method (MLR, GAM, ANN), response
variable type (log(recruitment), log(survival)), and constraint
on SSB during the selection process (no, yes). For an effi-
cient description of different model types, a model identifi-
cation (model ID) nomenclature was developed using the
following rules. In the model ID, the first letter indicates
statistical method (M for MLR, G for GAM, A for ANN),
and the second letter indicates response variable type (R for
log(recruitment), S for log(survival)). If SSB was con-
strained to be included in the model, a letter C is placed in
the third position. If the model was not forced to use SSB,
then the third letter is left blank. For example, model GRC
is a GAM predicting log(recruitment) with SSB forced to be
a covariate (Table 2 lists the various models and their prop-
erties).

Forecast evaluation
Most predictive modelling studies use part of the data set

to create models and another part to explicitly test the pre-
dictive power of the models. In our study, forecast accuracy
was measured by calculating a goodness-of-fit metric in a
two-step process. First, a subset of available observations,
usually called the in-sample set, is used to fit a statistical
model, then the fitted model is given a hidden set of data
(the out-of-sample set) that is excluded from model fitting.
In ANN applications, these are called the training set or seg-
ment (in-sample data set) and the forecasting set or segment
(out-of-sample data set). Although previous studies showed
the promising possibility of using nonparametric modeling
techniques to forecast, comparisons of forecasting perform-
ance were limited to the last few observations in the data
time series or a few subsets of the data series.

The mean absolute error (MAE) was used to measure how
well each model fit the in-sample (training) data and how
well it forecasted the out-of-sample (forecasting) data:

MAE ¼
Xn
i¼1

jYi � bY j=n

MAE is an average of absolute difference between observed
and predicted (or forecasted) values. There is an inverse re-
lationship between MAE and prediction accuracy, i.e., MAE
decreases as prediction accuracy improves.

Initial method
Recruitment and covariate time series were split into an

in-sample (training) set and an out-of-sample (forecasting)
set. It is standard practice to reserve the end portion of a
time series for forecast evaluation. The exact number of
data points to reserve for forecasting is a somewhat arbitrary
decision. Initially, an in-sample data set of the first 35 data
points from the time series was used to fit the functional re-
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lationship of the covariates with recruitment to develop fore-
casting models, and the remaining six out-of-sample data
points were reserved to assess the forecasting skill of the
models. This evaluation technique provided a single forecast
accuracy assessment for each of the three models in their
various forms.

Monte Carlo resampling
Having a single out-of-sample data set for each model

does not allow statistical evaluation of the forecasting per-
formance. We attempted a more robust evaluation by using
a Monte Carlo statistical resampling strategy to identify data
sets subjectively for forecasting. A number of observations
were randomly selected and reserved before fitting the fore-
cast models. Later, those reserved observations were com-
pared with the forecasts from the fitted recruitment models.
Repeating the process of Monte Carlo random sampling and
refitting the forecast models resulted in a set of indices suit-
able for measuring forecast accuracy.

We reserved six data points for the out-of-sample data set
with the intention of including two observations for each of

three qualitative recruitment strength categories. The three
categories were determined based on equal percentile parti-
tions of the entire recruitment time series of 41 observa-
tions: high (100%–66.7%), middle (66.6%–33.4%), and low
(33.3%–0%). Two data points from each recruitment cate-
gory were selected randomly, yielding the out-of-sample
data set consisting of six data points for forecast testing and
model validation. The corresponding environmental covari-
ates were reserved as well. The remaining 35 in-sample
data points were retained for re-estimating the parameters
of the recruitment model using the environmental covariates
identified earlier. Three hundred pairs (in-sample and out-of-
sample) of resampled data sets were generated using the
above procedure. Generation of 300 data sets is somewhat
arbitrary, but we felt that 300 replicates were sufficient to
compare the forecasting accuracy among the models statisti-
cally. A forecast was made based on each refitted model for
the corresponding portion of out-of-sample (reserved) data.
This procedure was repeated for all 300 pairs of resampled
data sets.

Sampling the out-of-sample data set from different re-

Table 2. Final models from the variable selection procedures.

Model
ID Method Response C* df r1 Covariates Coefficients p (> |t|)
MR MLR log(R) No 3 0.398 WMX1 0.3381 0.0209

WMX3 –0.3033 0.0438
MRC MLR log(R) Yes 6 0.219 SSB 3.4496 0.0060

SST1 –0.5712 0.0128
WMX1 0.3107 0.0263
NEP1 0.2891 0.0970
PDO3 –0.4668 0.0154

MS MLR log(R/S) No 6 0.182 SST1 –0.5310 0.0025
WMX1 0.2712 0.0278
WMX3 –0.235 0.0602
NEP1 0.3023 0.0527
PDO3 –0.478 0.0014

MSC MLR log(R/S) Yes 7 0.175 SSB 0.0819 0.9392
SST1 –0.5394 0.0102
WMX1 0.2702 0.0322
WMX3 –0.2333 0.0708
NEP1 0.3026 0.0568
PDO3 –0.4853 0.0072

GR GAM log(R) No 3 0.418 s(WMX1, 2){, WMX3
GRC GAM log(R) Yes 7 0.233 SSB, SST1, s(WMX1, 2){,

NEP1, PDO3
GS GAM log(R/S) No 4 0.327 s(SST1, 2){, PDO3
GSC GAM log(R/S) Yes 5 0.366 SSB, s(WMX3, 2){, PDO3
AR ANN log(R) No 3 0.384 WMX1, WMX3
ARC ANN log(R) Yes 7 0.136 SSB, SST1, WMX1, NEP1,

PDO3
AS ANN log(R/S) No 4 0.140 SST1, WMX1, WMX3,

NEP1, PDO3
ASC ANN log(R/S) Yes 5 0.056 SSB, SST1, WMX1, WMX3,

NEP1, PDO3

Note: Entries include model, statistical method, response variable (R, recruitment; S, survival), constraint (presence or absence), df (degrees of
freedom), serial autocorrelation at time lag 1 (r1), selected explanatory covariates, estimated coefficients, and p values. Significant autocorrelations,
tested based on the approximate 95% confidence interval, are underlined.

*C denotes the constraint on spawning stock biomass (SSB). If the constraint is given (yes), the SSB is forced to be included in the model and
remains during the variable selection process.

{Number in parentheses indicates the degrees of freedom for GAM spline smoothers.
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cruitment categories ensures that equal numbers of different
levels of recruitment strength are contained in a given out-of-
sample data set. This sampling scheme was chosen in an at-
tempt to cover the spectrum of recruitment variability as
much as possible for a given out-of-sample data set. Although
not employed in this study, alternatively, it is possible to sam-
ple the out-of-sample data with different sampling schemes,
e.g., total random selection regardless of recruitment level or
selection from only a particular recruitment level.

A multifactor analysis of variance (ANOVA) was applied
to the 300 Monte Carlo coefficients of determination of the
fitting and forecasting results. Three factors were examined
statistically to test for significant influence on fitting and
forecasting performance: statistical method (MLR, GAM,
ANN), response variable (log(recruitment), log(survival)),
and constraint on SSB during the selection process (no,
yes). Because ANOVA only reveals if there is a difference
in the means and not which means are different from each
other, a Student–Neuman–Keuls (SNK) multiple comparison
test was used to compare the means of MAE values of
model performance at a significance level of 0.05.

Results

Each statistical model selected different explanatory vari-
ables to fit to the response variables (log(recruitment) and
log(survival)) (Table 2). Selected covariates for the log(re-
cruitment) models were identical between the MLR and
GAM models, except the GAM allowed flexible, varying
degrees of freedom for WMX1. More explanatory variables
were selected when SSB was constrained to be in a model.
When log(survival) was modeled, MLR selected more cova-
riates compared with the log(recruitment) model. Compared
with the unconstrained MLR log(survival) model, constrain-
ing SSB did not alter the set of explanatory variables. How-
ever, the SSB covariate in the constrained model was highly
insignificant (p = 0.9392), indicating that adding this term to
the model did not significantly improve the fit. The GAM
technique resulted in different sets of explanatory variables
for the constrained and unconstrained models for both re-
sponse variables (log(recruitment) and log(survival)). Con-
strained SSB models had more covariates for GAM than for
MLR. Out of 19 possible explanatory variables, the maxi-
mum number of covariates selected for the final models
was six (MLR for log(survival) with constraint). The exami-
nation of serial correlations in the residuals of all 12 models
showed that there were four significant serial correlations at
time lag 1 (Table 2). However, we judged that the magni-
tudes of the correlations (maximum = 0.481) were not sub-
stantial enough to seriously violate the assumption of no
serial correlation. None of the serial correlations was signifi-
cant beyond time lag 1.

Interestingly, SSB was never selected as an important co-
variate in any final model. However, in every case, con-
straining SSB to be in the model during the variable
selection procedure resulted in richer models with more ex-
planatory variables. GAM selected fewer explanatory varia-
bles than MLR for log(survival). Another interesting finding
in the variable selection procedure was that no spawning
season (season number 2) covariates were chosen by any of
the final models.

Several consistent patterns emerged. In all but one model
(GS), wind mixing was selected as an important covariate.
Wind mixing prior to spawning (WMX1) in the MLR al-
ways had a positive contribution to recruitment, and the
magnitude of its coefficient was fairly uniform (~0.3).
WMX3 had a similar, but opposite, impact. Whenever
WMX1 appeared in a GAM model (GR and GRC), it was
either concave or asymptotic (Fig. 2). WMX3, on the other
hand, was negative and linear in GR and was convex in GS.

The optimal number of ANN hidden neurons was deter-
mined by systematically fitting the final ANN models, vary-
ing the number of hidden neurons, and comparing the
models’ performance. For the in-sample data set, the fit im-
proved steadily for AR and AS models, with MAE ap-
proaching zero as more hidden neurons were added (Fig. 3).
For the out-of-sample data set, however, the forecast did not
improve by adding more hidden neurons to the model. Fore-
casting accuracy became worse as more neurons were
added, indicating possible overparameterization. From the
result of this experiment, we decided to use one hidden neu-
ron for the final ANN models because more than one hidden
neuron in the model appeared to cause overparameterization.
We calculated the MAE values of the final models and com-
pared in-sample and out-of-sample performance (Fig. 4). For
the in-sample data set, constrained ANN models performed
better (smaller MAE) than all other models. GAMs per-
formed better than MLRs for log(recruitment) but not for
log(survival). In general, log(survival) models fit the in-
sample data set better than log(recruitment) models. This
result can be attributed to the greater number of explana-
tory variables in the log(survival) models.

The fitted models were applied to the out-of-sample data
set reserved from the end of the time series to test their fore-
casting performance. Using MAE as the performance meas-
ure, MLR forecasting performance was highest across all
model cases, except MR (Fig. 4). When constrained and ap-
plied to log(recruitment), MRC (0.49) and GRC (0.55) had
higher accuracy compared with log(survival). ASC (0.59)
outperformed ARC (0.65). All unconstrained log(recruit-
ment) models forecast poorly (MAE > 0.79).

The forecast performances just described cannot be com-
pared statistically because fitting and forecasting were ap-
plied to only one data set. To overcome this shortcoming,
the performance of all models was compared statistically by
creating 300 data sets using the previously described Monte
Carlo resampling strategy. Mean MAE values, with 95%
confidence, compared fitting and forecasting performances
of the models applied to the resampled data sets (Fig. 5).

In general, model fitting was so accurate that confidence
intervals cannot even be seen in Fig. 5a. An ANOVA (not
presented) of fitting performances based on the 300 re-
sampled data sets showed that all three factors (response,
method, and constraint) and their interactions were statisti-
cally significant (p < 0.05).

The MAE values for forecasting performance had much
wider confidence intervals (Fig. 5b). At first glance, no sin-
gle statistical method stood out as superior, although log(-
survival) models appeared to perform better in general.
GAMs performed best for log(recruitment), and MLRs per-
formed best for log(survival). The forecasting performances
of ANNs were disappointing — lowest for log(recruitment)
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and moderate for log(survival). An ANOVA (Table 3) re-
vealed that the main factors (response, method, and con-
straint) and some of their interactions were statistically
significant for forecasting performance. The choice of re-
sponse variable was the most influential factor for forecast-
ing performance based on the relative importance gauged by

the mean square error (MS). Among the main factors, in-
cluding the SSB constraint was more influential for forecast-
ing performance than the choice of statistical method.
Significant interactions between main factors indicated that
one factor did not dominate the determination of forecasting
performance. Interactions between response variable and

Fig. 2. Results of the application of GAM models in the following configurations as described in Table 2: (a) GR, (b) GRC, (c) GS, and (d)
GSC. Partial residuals for the fitted line of the variables are plotted. Smoothing amount and degrees of freedom for the smoothers of the
fitted line of the variable are indicated in the Y axis label, if other than linear.
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statistical method were significant because the performance
of the statistical methods changed with the choice of re-
sponse variable; GAMs and MLRs were the best statistical
method when log(recruitment) and log(survival) were the re-
sponse variables, respectively. Significant interactions be-
tween response variables and constraint factors
demonstrated that forcing the SSB covariate to be included

in the model during the variable selection procedure had a
positive, significant effect on forecasting in one response
variable case (log(recruitment)) but not in the other case
(log(survival)).

Given that modeling with log(survival) as the response
variable resulted in better forecasts, we compared the fore-
casting performance of the log(survival) models by applying
the SNK multiple comparison test (Table 4). There was no
statistical difference for the forecasting performance of all
three SSB-unconstrained models (MLRs, GAMs, and
ANNs), although MLRs had lower observed MAE averages.
The forecast performances of ANNs and GAMs became
poor when models were constrained with SSB and their
MAE means were statistically different from MLRs means.
Results also indicated that imposing the SSB constraint con-
sistently reduced the forecasting performance within a statis-
tical method, but the differences were not statistically
significant.

Discussion
The recruitment models constructed in this study selected

a suite of environmental covariates describing underlying re-
cruitment variability, despite the lack of biological covari-

Fig. 3. Effect on model performance of the number of ANN model
hidden neurons as measured by MAE values. Solid symbols repre-
sent the in-sample fitting set, open symbols, the out-of-sample
forecasting set. Solid lines designate results from models with
log(recruitment), and broken lines indicate results for log(survival)
models. Circles are for models with no constraint on SSB during
variable selection, and triangles are for models with constraint on
SSB.

Fig. 4. Comparison of MAE values of various final MLR, GAM,
and ANN models described in Table 2 for the in-sample fitting
set (a) and the out-of-sample forecasting set (b). Shaded bars repre-
sent MAE for models with log(recruitment); open bars show MAE
for models with log(survival).

Fig. 5. Performance measures (MAE) of final response variables
models when applied to 300 resampled data sets and compared be-
tween different statistical models as described in Table 2 for the in-
sample fitting sets (a) and the out-of-sample forecasting sets (b).
Shaded circles indicate MAE for models with log(recruitment);
open circles indicate MAE for models with log(survival). Error bars
on the circles indicate ±2 SE (standard error). For the fitting sets,
error bars are not easily visible because of the models’ high accu-
racy at fitting.
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ates. Among the three statistical methods, ANNs performed
noticeably well for the in-sample data set, achieving close to
a perfect fit to observed data as more hidden neurons were
used. The high performance of ANNs in model fitting indi-
cates the high flexibility of ANNs as function approxima-
tors. However, the high performance achieved in fitting was
not duplicated when the fitted model was applied to the un-
seen out-of-sample data set for forecasting. This tension be-
tween fitting and forecasting performance as more hidden
neurons were introduced suggests that ANNs can easily be
susceptible to overparameterization when used to model
fisheries recruitment time series of limited length. This is
exactly the situation that we face with the GOA pollock re-
cruitment time series, even though the data set is relatively
long compared with the recruitment time series of other fish
species in the world (Myers et al. 1995). If the GOA pollock
recruitment time series is sensitive to overparameterization
by ANNs, then shorter recruitment time series would be
even more vulnerable. Thus, fisheries scientists attempting
to develop forecast models should use caution when deter-
mining the number of hidden neurons for ANN models.

It is interesting that the SSB covariate was not selected as
a significant covariate by a single statistical method consid-
ered in this study. This may signal a lack of density depend-
ence in the GOA pollock recruitment process. Although
many fisheries management models assume density depend-
ence, it is not often clearly identifiable in marine popula-
tions, and the presence of its effect for some species is
debatable (Rose et al. 2001). One possible reason for the
lack of significant density dependence in GOA pollock re-
cruitment is that the intensity of influential external factors
can obscure its relatively weak signal. Whether or not there
is a density-dependent effect on GOA pollock recruitment,
we still recommend including SSB in recruitment forecast
models for two reasons. First, there is a better theoretical
and biological basis for doing so. No spawning implies no
reproduction. Second, having SSB in the forecast model
consistently produced equivalent or better forecasts across
the models of same response variable and modeling techni-
que, as seen in our Monte Carlo resampling tests, even
though SSB was not a statistically significant covariate.

In building a recruitment forecast model, there are two
ways to include SSB: constraining it to be included in the
model from the beginning of the variable selection proce-
dure or adding SSB to the model at the final stage after the
variable selection procedure completes selecting other cova-
riates. These two approaches may end up having identical or
different sets of covariates for the final model. In our study,

for the models with log(recruitment) as the response varia-
ble, the sets of selected covariates were different for the
same type of statistical methods, depending on whether or
not the SSB covariate was constrained. However, the se-
lected covariates were identical (except SSB) for the
log(survival) model. Although the modeler is free to
choose a variable selection approach, we recommend in-
cluding the SSB covariate throughout the variable selection
procedure for the reason mentioned in the previous para-
graph (no spawning, no recruitment) and for the following
rationale: SSB’s underlying dynamics with other covariates
may allow the final model to produce a different set of
variables than the model selected without a constraint on
SSB. In that case, the final model candidate with SSB in-
cluded from the very beginning stage of variable selection
would be biologically more reasonable than the other
model candidate with SSB added at the last stage of varia-
ble selection.

It also is noteworthy that no covariate affecting the stock
during the spawning season was selected by either MLRs or
GAMs. Kim and Gunderson (1989), Bailey et al. (1996),
and Kendall et al. (1996) show that GOA pollock recruit-
ment strength is determined mainly during the spawning pe-
riod. However, Bailey (2000) later reports that the critical
stage for the determination of GOA pollock recruitment
strength shifted from the larval stage to the juvenile stage
after a major environmental regime shift in the late 1970s.
Mortality during the larval stage was largely influenced by
environmental conditions, and its correlation with recruit-
ment remained good until the mid-1980s. After that, greater
juvenile mortality coincided with an increase in the abun-
dance of predatory flatfish species (e.g., arrowtooth flounder
(Atheresthes stomias)) and cod (Gadus morhua). For the
postspawning season, the PDO index, which represents
long-term variability in the system as an indicator of regime
shifts, was selected by our forecast models. A positive value
of PDO indicates a warmer regime and a negative value in-
dicates a colder regime in decadal variability of the GOA
environmental system. The inverse relationship between
PDO and recruitment in MLRs and GAMs suggests that re-
cruitment strength weakens as the ecosystem approaches the
warmer regime. Regime shifts alter the dynamics of physical
environments and biological systems in major ways (Hol-
lowed and Wooster 1995; Francis et al. 1998; McGowan et
al. 1998). The fact that the PDO during postspawning season
was selected by our models as an influential covariate af-
fecting recruitment may be further evidence for a shift in
the critical period of recruitment strength determination.

Table 3. Results of analysis of variance (ANOVA) on the MAE values of all fore-
casting models for the resampled out-of-sample data sets.

Source SS df MS F p (> F)
Method 0.628 2 0.314 12.2 <0.0001
Response 4.854 1 4.854 187.8 <0.0001
Constraint 0.595 1 0.595 23.0 <0.0001
Method � response 0.515 2 0.257 10.0 <0.0001
Method � constraint 0.015 2 0.007 0.3 0.7531
Response � constraint 1.919 1 1.919 74.2 <0.0001
Method � response � constraint 0.005 2 0.002 0.1 0.9160

Note: SS, sum of squares; df, degrees of freedom; MS, mean square error; F, F statistics.
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It may not be feasible to make direct comparisons with
Bailey’s (2000) results on the shift in the recruitment critical
period because this current study uses different modeling ap-
proaches and has limited biological variables available.
However, both studies indicate that conditions during the
postspawning season considerably affect recruitment suc-
cess. The timing of the during-spawning season includes the
larval stage, whereas the postspawning season matches with
the juvenile stage. Two postspawning environmental varia-
bles were selected as influential by the forecast models in
this study: wind mixing and PDO. As no biological variables
other than SSB were used in building the forecast models in
this study, it is impossible to say that the timing of recruit-
ment determination has shifted to the postspawning season
as found in Bailey’s study. However, we deduce that wind
mixing and PDO might operate indirectly on the dynamics
of the pollock population or between the pollock population
and other predatory species. Environmental conditions can
facilitate retention of juveniles in favorable nursery grounds
for better survival or force overlap in habitats of juvenile
pollock and predators, leading to favorable conditions for
piscivores and thus higher juvenile pollock mortality.

Although the models in this study were not designed to
examine recruitment processes and dynamics explicitly, the
covariates selected in this study were similar to the covari-
ates identified as influential in other studies. Previous re-
search by Megrey et al. (1995) based on the GOA pollock
recruitment time series of 1962–1989 (28 annual data
points) found that GOA age-2 pollock recruitment variabil-
ity was related to precipitation, an index of atmospheric
sea-level pressure gradient, and local wind mixing. Our find-
ings, based on an extended time series from 1961–1995
(35 annual recruitment data points were used for model de-
velopment in this study), are very similar to their results.
Bailey et al. (1996) reported that mortality rates of early-
feeding larvae tend to be negatively correlated with temper-
ature and positively correlated with wind mixing. Their find-
ings are consistent with our model results in that SST had a
negative effect and local wind mixing had a positive effect
on recruitment strength during the prespawning season. In
our study, these covariates were selected as influential varia-
bles by both MLRs and GAMs. Interestingly, the positive
effect of wind mixing during prespawning was reversed to a
negative effect during the postspawning season in the MLRs
and GAMs. It is hypothesized that winds mixing the water
column prior to the spawning season establish conditions on
the spawning grounds more conducive to larval survival.
Wind mixing deepens the mixed layer of nutrient-rich water
and consequently enhances primary and secondary produc-
tion. It has also been shown that strong winds relate to for-

mation and maintenance of eddies in Shelikof Strait, and
eddies may play an important role in keeping pollock larvae
in favorable nursery locations (Stabeno et al. 1995). Bailey
and Macklin (1994) reported that strong wind mixing during
pollock larvae’s first-feeding period was associated with
lower survival, and higher survival rates occurred during
calm periods often bracketed by strong mixing. Strong wind
mixing during the postspawning season can decrease sur-
vival of postlarval and early juvenile stages because young
pollock avoid turbulence (Olla and Davis 1990) and avoid-
ance of turbulence can interfere with their ability to feed.
Also, strong winds associated with wind mixing can increase
ocean circulation causing offshore transport of organisms to
unfavorable nursery grounds. These simplistic hypotheses
require testing with further studies.

Although there are similarities between this and previous
studies in relationships determined among key environmen-
tal covariates and recruitment success, care must be taken
in their interpretation. In this study, for example, data on
biological variables and the geographic extent of environ-
mental variables used for model development were limited.
The only biological variable used as a covariate was SSB,
and the environmental variables were proxies centered
around Shelikof Strait, assuming that recruitment success is
largely determined from that area. However, recruitment
abundance and spawning biomass data were from the stock
assessment model that utilizes data sources from different
areas of the GOA, including multiple spawning grounds
(Dorn et al. 2003). The Alaska Fisheries Science Center’s
echo-integration trawl surveys show that the Shelikof area
contributes 59% of the total biomass of GOA pollock (Gut-
tormsen et al. 2003). Thus, relating environmental variables
from a confined area, such as Shelikof Strait, to recruitment
data that are derived from gulf-wide sources may obscure
model results. It is difficult to rule out artifacts in model re-
sults due to scale mismatch between recruitment data and
covariates (Bailey et al. 2005).

The aim of this study was to build and test recruitment
forecast models, not to study recruitment processes and
mechanisms, nor to identify key environmental covariates
that describe recruitment variability. Thus, it may not be ap-
propriate to draw conclusions on the meaning and detailed
interpretation of covariates selected in the models. Rather,
the results of covariate selection should be used for generat-
ing new hypotheses and for improving forecasting perform-
ance through the process of verifying new hypotheses. Even
though the forecast models may not help explain functional
relationships between response and explanatory variables in
a natural ecosystem and the equations may not accurately
represent natural processes, it is still useful and advanta-

Table 4. The means of MAE of forecasting models having log(survival) as re-
sponse for the resampled out-of-sample data sets. Means are sorted in ascending
order. Means that are grouped by underlining are not significantly different at
the significance level of 0.05, based on SNK multiple comparison test.
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geous to predict the value of a response variable given the
value of associated explanatory variables (Zar 1999). For
these reasons, we focus more on the performance of fore-
casting in selection of covariates for building recruitment
forecast models. However, care should be taken to avoid
spurious correlations between recruitment and environmental
covariates. In a simulation study of recruitment models, Me-
grey et al. (2005) showed that spurious correlations tend to
occur more frequently as larger variability is associated
with recruitment and environmental covariates.

We expected that unconventional computer intensive
methods, such as GAMs and ANNs, would be better for re-
cruitment forecasting than conventional parametric methods,
because GAMs and ANNs have comparatively relaxed stat-
istical assumptions and flexibility in function approximation.
Contrary to our expectations, conventional parametric MLR
statistical models outperformed more sophisticated GAMs
and ANNs in forecasting recruitment strength when com-
pared using a Monte Carlo resampling method. The apparent
superiority of MLRs in recruitment forecasting may be lim-
ited to the GOA pollock case for the available data and
should not be generalized to all other fish species, because
recruitment characteristics are species-, spatial-, and tempo-
ral-specific. Different nonparametric techniques might prove
to be better forecasting tools for other species. However, use
of Monte Carlo resampling for evaluation of possible re-
cruitment forecasting model candidates can be useful and ef-
fective if applied to other fish species and should be applied
when determining the best forecasting model. This type of
resampling approach can also be used to gauge the robust-
ness of the models through cross-validation and to identify
key covariates through sensitivity analysis (Lunneborg
2000).

We advocate employing more than one method to build
recruitment forecast models. Each statistical model has ad-
vantages and disadvantages. As Prager (2003) points out,
each model provides, from its particular perspective, an im-
perfect view of reality. The more perspectives one gains, the
better. If the merits of multiple modeling techniques could
be combined, we would be able to build better-performing
recruitment forecast models instead of relying on just one
modeling technique. For example, GAMs are flexible and
suggest the functional relationship of contributing covari-
ates, but they do not indicate the influence of the covariate
to the overall prediction. MLRs are straightforward and reli-
able for parameter estimation and hypothesis testing, but
they require rather restrictive modeling assumptions, such
as linearity, normality, and homogeneous variances. Thus, a
modeler can use GAMs to explore functional relationships
and MLRs to test for the significance of covariates’ coeffi-
cients in quadratic or cubic terms if some covariates appear
to be nonlinearly related to recruitment in GAMs. As dem-
onstrated in this study, once prospective model candidates
are identified, a Monte Carlo resampling strategy can be ap-
plied to evaluate the models’ performance for forecasting.
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