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Application 3: recruitment prediction

Sarah Hinckley, Bernard A. Megrey, and Thomas Miller

Definition

What do we mean by recruitment prediction? The first thing to consider in defining
this term is the time horizon of the prediction. Short-term predictions mean the use of
individual-based, coupled physical-biological models (ICPBMs) of fish early life his-
tory to predict annual recruitment, most usually to aid managers of fish stocks. These
predictions may be made via indices or other measures of prerecruitment or recruit-
ment, derived from ICPBM output, that correlate well with other independent, rea-
sonable predictors of recruitment (derived from stock-assessment models, reasonable
independent juvenile or prerecruit surveys conducted with acoustic or trawl, or other
net-based survey methods). These may be used alone or in conjunction with other
predictors, such as spawning-stock biomass. Actual numerical estimates (of the cor-
rect magnitude) derived from ICPBMs may be possible, but only if certain conditions
are met (e.g. the super-individual method, proportionality indices, or other methods
of relating model indices to real population numbers are used, and spawning-
biomass or egg-production estimates as initial conditions are included). A benefit of
these indices is that they could serve as a replacement for expensive juvenile surveys.

Under this definition, the forecast window for recruitment predictions would be lim-
ited to the number of years from spawning to recruitment for each species of interest.
This is because of the fundamental lack of predictability of regional and small-scale
ocean physics. These prediction windows will be different for each species owing to
differences in the unique aspects of a species’ life history.

Longer-term recruitment predictions that are likely under different future scenarios
(e.g. of climate, fishing, or ocean variability) may also be derived from ICPBMs
through the use of the models to gain a mechanistic understanding of the important
biophysical processes underlying recruitment variability. This knowledge may, for
example, help us to understand simple correlations between biophysical factors and
recruitment, and when such correlations may or may not hold up.

The development of recruitment predictors from ICPBMs requires careful considera-
tion of what we mean by recruitment. There are many ways of defining recruitment.
The operational definition depends on the purpose or goal of the prediction. Are we
predicting recruitment for management purposes? If so, then recruitment is often
defined as the number of fish entering the exploited segment of the population,
where the meaning of “exploited segment” depends on the distinctive attributes of
each fishery (i.e. gear type, time and space scales). If examining life-history character-
istics or gaining ecological understanding is the goal, recruitment could be defined as
the number of fish reaching a juvenile nursery area, the number reaching maturity, or
the number reaching a particular age, size, or stage.

Objectives of recruitment prediction

There can be several different objectives for recruitment prediction, and these will
affect not only how we select a predictive index from the model, but how the ICPBM
itself is constructed and its relevant physical and biological details. Recruitment pre-
diction may be undertaken to test our understanding of the processes that affect re-
cruitment. ICPBMs may be developed to clarify mechanistic processes underlying
correlations between physical or biological factors and recruitment. Recruitment pre-
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diction may be applied or pragmatic, for example, to aid in the reduction of the num-
ber of recruitment scenarios that must be performed in the stock-assessment model-
ling process.

Who are the clients/consumers of the forecasts? To maximize the usefulness of re-
cruitment forecasts, they need to be tailored to the user. The needs of scientific re-
searchers, resource managers, and commercial fishery concerns may be different. For
example, a forecast prepared for a scientist might be used as a null hypothesis to
demonstrate whether or not the forecast embodies a sufficient understanding of the
processes and mechanisms that cause good and bad year classes. In contrast, deci-
sion-makers in commercial fisheries may require a forecast only as a basis for future
buying decisions regarding capital expenditures for equipment or ship improve-
ments. In this case, the emphasis is not so much on perfect understanding. For exam-
ple, if a forecast tells them to expect several years of good recruitment, they may
decide to purchase automatic fish-filleting equipment optimized for smaller fish. If
recruitment is expected to be poor, they may conclude that they will be exploiting
older individuals from the population and should purchase filleting machines opti-
mized for larger fish. In both cases, their goal is to maximize product recovery, and
having the right equipment for the circumstances plays a large role in attaining their
goal.

Indices of recruitment from ICPBMs

When using ICPBMs to aid in the prediction of recruitment, an index that appears to
correlate well with recruitment can be used. Often, these indices relate to some un-
derlying theory about recruitment success. Some examples of recruitment or prere-
cruitment indices that have been, or could be, derived from ICPBMs are (i) the
number of larvae or juveniles that reach a specified nursery area, weighted by their
residence time there (Parada et al., in review); (ii) the number that reach a nursery
area by a particular date, size, or age (Bartsch ef al., 2004; Baumann et al., 2006); (iii)
indices of larval drift or retention, such as the number going in a predefined direction
(Wespestad et al., 2000; Wilderbuer et al., 2002; Stockhausen, pers. comm.) that ex-
perience different levels of bottom depth anomalies (Baumann et al., 2006), or a sur-
vival rate after a certain number of days of drift (Allain et al., 2007); (iv) indices of
overlap of larvae with their prey (Hinrichsen et al., 2005); or (v) indices of juvenile
particle density at the end of a simulation to look for density-dependent processes
related to recruitment (Baumann et al., 2006).

Indices may be compared with data, for example, surveys of prerecruits or recruits.
Indices may also be compared with stock-assessment model estimates of recruitment.
In this case, caution is needed. The same data may be used in the ICPBM and the
stock-assessment model (e.g. spawning-stock biomass); therefore, the indices pro-
duced by the two models may not be independent.

The proper choice of recruitment indices will depend on the objectives of the work,
the life history of the species, and theories (conceptual models) of what processes are
critical to recruitment variability. The development of a conceptual model (see Sec-
tion 6.4) can aid in the choice of indices.

The need for a conceptual model

Development of a conceptual model of the processes controlling recruitment for each
species and area is key to the use of ICPBMs in recruitment prediction, and also to the
choice of the proper indices derived from the models. Development of a conceptual
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model is a way of organizing what is important, the importance of the roles played
by particular processes, and what life stages are affected. If this is neglected, impor-
tant factors or processes may be missed in the ICBPM.

e Life stages and their duration
e Variation in mortality at each stage

e Biological and physical factors affecting each stage and the “intensity” of
the effect

e Processes important within each stage

If different processes at different life stages are thought to be important, it may be
necessary to develop different conceptual models for the same species in different
areas. For example, the walleye pollock conceptual models for the Gulf of Alaska
(http://www.pmel.noaa.gov/foci/forecast/mgt.html; Figure 6.4.1) and Bering Sea
(http://www.pmel.noaa.gov/foci/sebscc/results/megrey/bs_concept.html; Figure 6.4.2)
contain the same life stages and duration, but they differ with respect to which life
stages experience the most variability in mortality and the factors that influence mor-
tality and survival. Therefore, somewhat different ICPBMs have been developed, and
different indices may be necessary to predict recruitment.
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Figure 6.4.1. Gulf of Alaska walleye pollock conceptual model (from Megrey and Wespestad,
1997).
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Figure 6.4.2. Southeast Bering Sea walleye pollock conceptual model (from Megrey et al., 1996).

Conceptual models are not stagnant. They evolve as new information and under-
standing become available. For example, the original Gulf of Alaska pollock concep-
tual model (Figure 6.4.1) has recently been modified to include the effects of regime-
scale climate impacts, as well as predation and competition effects (species-to-species
interactions) known to be important at the ecosystem level (Bailey, 2000; Bailey et al.,
2005; Megrey and Macklin, unpublished report).

Forecasting accuracy

How accurate do recruitment forecasts have to be before they become useful? This is
a difficult yet relevant question that needs immediate research attention. A recent
paper by De Oliveira and Butterworth (2005) offers a concrete example of a possible
approach. The premise in this paper was that environmental indices that provide
short-term predictions of recruitment have the potential to improve the average yield
from highly productive resources that sustain recruit fisheries without an associated
increase in risk (of resource “collapse”). This paper’s authors asked the question, how
accurate does an environment-dependent, spawner—recruit relationship have to be
before it affects management decisions? Specifically, what are the benefits of using
environmental indices to set appropriate total allowable catches? Through a con-
trolled simulation experiment, they concluded that an environmental index needs to
explain roughly 50% or more of the total variation in recruitment (r2 >0.5) before the
management procedure starts revealing benefits in terms of the summary perform-
ance statistics for risk and average catch. Having similar quantitative information on
recruitment forecasts from ICPBM models would help frame the circumstances in
which it could prove to be of benefit.

If an index derived from an ICPBM is to be used for recruitment forecasting, it is
critical to assess its accuracy and to build trust in its ability to forecast.
Techniques for forecasting

Forecasts can take many different forms. They can take the form of quantitative an-
nual estimates of absolute abundance (e.g. there will be 5.5 billion recruits next year).
We do not believe these are very useful, and they are difficult to produce with any
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accuracy and precision. They can also be qualitative. For example, the forecast could
be given in terms of recruitment being in a particular state — below average, average,
and above average (low, medium, and high) — with appropriate methods used to de-
fine, in operational terms, states such as long-term averages or quantiles (33 %, 50 %,
or 66 %) based on observed recruitment trends. Rothschild and Mullen (1985) give a
good example of how recruitment information (from data or models) can be usefully
described by non-parametric classification based on Markov chains. Finally, a re-
cruitment forecast could be the result of an ensemble estimate from numerous sto-
chastic-forecast implementations. The forecast can be delivered as a probability
statement; for example, the probability of achieving a given recruitment level or state
based on x conditions and y assumptions is 10 %. The most appropriate form depends
on many factors including many that have been discussed above, such as for whom
the forecast is being prepared, how it will be used, the required accuracy, and the
required forecast horizon.

A caution should be offered regarding the use of recruitment estimates from stock-
assessment models to calculate metrics as described above. Changes/updates in an-
nual stock-assessment/cohort-analysis models and resulting recruitment estimates
make the most recent estimates of “recruitment” somewhat of a moving target. Stock-
assessment models estimate recruitment by summing all fish from a cohort (all indi-
viduals with the same birth year) that have died as a result of the fishery (i.e. the
catches) and then including the fish that have died from natural causes (also esti-
mated by assuming a particular rate of natural mortality). In other words, the re-
cruitment estimate is the population that would have existed in order to generate the
observed catches. The data point of most interest is usually the current year. If a co-
hort is still contributing to the catch, then in next year’s assessment, an additional
year of catches and losses from natural mortality will increase the recruitment esti-
mate relative to the current year. The recruitment estimate will gradually increase
over time and finally stabilize once the cohort is completely fished out (i.e. no more
individuals of the cohort survive to add to the catches).

6.7 Philosophy of modelling

Approaches to understanding mechanisms that regulate recruitment in fish have in-
creasingly taken an individual-based approach. This approach can be justified on two
general grounds. First, field research into recruitment processes in fish has demon-
strated that the individuals that survive early life often possess a unique suite of
genotypic or phenotype traits that are not simply a random draw from the distribu-
tion present at spawning. For example, numerous studies involving otolith micro-
structure have demonstrated that survivors are selected from a narrow window of
the original distribution of birthdates. Other research has revealed selection based on
growth rate, size at settlement, spawning location, and maternal influence. Together,
these studies have highlighted the fact that we would probably not understand
mechanisms regulating recruitment by measuring mean rates; instead, we needed to
characterize the sources, patterns, and consequences of variation among individuals
in early life traits and understand why the unique subset of traits possessed by re-
cruits conferred a survival advantage.

The second justification for individual-based approaches invokes the importance of
spatial processes in regulating recruitment. Sinclair and Iles (1988) proposed a mem-
ber-vagrant hypothesis in which population persistence relied upon the existence of
closed trajectories that allowed surviving larvae to complete their life cycle. Those
larvae that “followed” appropriate trajectories became members of the reproductive
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population; individuals that “followed” inappropriate trajectories were lost to the
reproductive population. This hypothesis, built on the existing understanding of the
importance of population structure within a species, emphasizes the importance of
the spatial location of larvae at different points in development on their subsequent
survival.

Coupled physical-biological models addressing questions involving fish early life
histories have typically adopted an individual-based approach. The majority of such
models have used a grid-based hydrodynamic model to predict currents at nodes on
the grid, which are then used in a Lagrangian particle-tracking algorithm to move
particles that represent the early life stages around the model domain. For example,
in one of the earliest applications of such models, Bartsch and colleagues (Bartsch,
1988, 1993; Bartsch et al., 1989) considered the trajectories of herring larvae in the
North Sea. The model results indicated the importance of a retentive area off the east
coast of Scotland. Subsequently, ICPBMs have become more sophisticated in both the
representation of the current fields and the biological representation of individual
fish. Such models have been used to quantify the contribution of different spawning
locations to recruitment, the role of physical processes in regulating feeding, and the
influence of mortality on spatial distributions.

However, it is vital to assess and separate the biological motivations for individual-
based approaches to the study of fish populations from the computational motiva-
tion. Computationally, individual-based approaches are attractive because they ele-
gantly combine the grid-based, spatially specific predictions of hydrodynamic
models with biological processes. In so doing, such models portray individuals that
differ with respect to their trajectories and thus their exposures to environmental
forcing. To ease computational demands, population-level predictions are derived by
expanding the predictions for a single particle by a multiplier to represent the contri-
bution to the population. This approach implicitly assumes that all variability in early
life history is spatially determined. Simply stated, this approach assumes that all
variability is caused by differences among the trajectories followed by individuals,
and not by inherent biological interindividual variability. The approach emphasizes
the importance of member—vagrant-type ideas at the expense of phenotypic variabil-
ity among individuals. Not all models make this assumption. A few do include and
sample from distributions of traits. For example, in their detailed model of feeding,
Fiksen and Mackenzie (2002) sampled from distributions of reactive distances to es-
timate feeding incidence. However, ICPBMs of the entire early life history that incor-
porate inherent interindividual variability have yet to be developed. Whether or not
the development of such models is important depends entirely on how total pheno-
typic variability is partitioned between spatially derived sources and inherent inter-
individual differences. This partitioning is, as yet, unexplored and unquantified.



