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2.1

Particle tracking

David Brickman, Bjern Adlandsvik, Uffe H. Thygesen, Carolina Parada, Kenneth
Rose, Albert J. Hermann, and Karen Edwards

Particle-tracking models form the backbone of three-dimensional models of fish early
life. These models use predictions of current velocities and diffusivities from hydro-
dynamic models to calculate the movement of individual particles in space and time.
The goal of this section is to provide a set of recommendations for particle tracking in
estuary and ocean modelling. Because the motivation comes principally from its ap-
plication to biophysical modelling, the case of biologically active particles is specifi-
cally considered. The first part of this section presents, in a concise form, the essential
aspects of best practices for particle tracking. Extra material is contained in Annexes
1-5. The second part presents a number of cases designed to test the performance of
a particle-tracking routine.

Best practices for particle tracking

What makes particle tracking in an oceanographic (biophysical modelling) context
different from tracking in an atmospheric context? The simple answer is that, histori-
cally, development of particle-tracking theory and techniques in the atmosphere was
concerned principally with the atmospheric boundary layer, with an emphasis on
correctly describing the statistics of dispersion for time-scales shorter than the La-
grangian time-scale (Ti), the time-scale at which velocity fluctuations are correlated.
Generally, the computations were done for short periods (minutes to hours) and in
one or two dimensions (for which analytic models exist; see Wilson et al., 1981; Legg
and Raupach, 1982; Thomson, 1987). These Lagrangian stochastic models (LSMs), or
“random flight models”, are mathematically complicated, but are valid at all time
scales (except below the Kolmogorov microscale, where viscosity becomes relevant;
Thomson, 1987; Rodean, 1996). In addition, a critical problem of buoyant particles,
“the trajectory crossing problem”, has only approximate solutions for LSMs (Sawford
and Guest, 1991; Olia, 2002).

For biophysical modelling in the aquatic realm, we tend to be interested in time-
scales longer than Tt and in three-dimensional drift for periods as long as several
months. Another crucial difference is that many biophysical particles (representing
planktonic larvae) have directed swimming motions that must be incorporated into
the particle-tracking algorithm. This necessitates the use of random displacement
models (RDMs, also known as random walk models). These models are valid for
time-scales >>Tv (T vertical =3-10 min; Tt horizontal=1-8 d (near surface; greater at
depth)). That the time-scales of interest in the ocean are not always >> Tv. (especially
on the horizontal plane) means that the use of RDMs in oceanographic particle track-
ing can be considered a “best-we-can-do” approach.

2.1.1 Choice of model

For the reasons outlined above, an RDM is recommended for oceanographic applica-
tion. If we assume that the turbulence at each point is isotropic in the horizontal (i.e.
its local statistics are invariant to rotations around a vertical axis), then turbulence is
characterized by the horizontal diffusivity Ki1= K22 and the vertical diffusivity Kss. The
three-dimensional RDM then becomes (Rodean, 1996):
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dx; :{Ui(x,t)JraK“(X’t)}dt + (2K, (X, tdt)"* Q, (1)
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where dxi is the displacement in the ith direction (i=1, 2, 3=x, y, z), Ui is the velocity,
X denotes three-dimensional position,  is time, Ki is the eddy diffusivity, dt is the
time-step, and Q is a Gaussian random variable with zero mean and unit variance.
The term for the spatial derivative of the diffusivity oK; (X,t)/dX; is a drift correction
term required to remove erroneous aggregations, or evacuations, of particles (see
Hunter et al. (1993); Visser (1997) for other formulations of the RDM). This term is
required in order to maintain a well-mixed condition (WMC), that is, the requirement
that an initial uniform concentration of particles remains uniform for all time (Brick-
man and Smith, 2002). For most applications, the algorithm based on Equation (1)
will use circulation model output to provide the velocity and diffusivity fields. These
fields exist on discrete grids, which may be problematic (see below).

2.1.2 Time discretization

The RDM is a stochastic differential equation, which in practice is solved using a dis-
cretization technique. The two commonly used are the Euler and Runge—Kutta rou-
tines. The former is a simple, first-order forward discretization routine, which
generally executes quickly but is subject to truncation errors and (possible) instabili-
ties. The latter is a higher order routine that is numerically more accurate. In the ab-
sence of turbulence, a higher order differencing scheme is recommended.

In the presence of turbulence, the choice of discretization technique is less obvious,
because the precision gained by a high-order routine could be lost as a result of the
“noise” of the turbulence. To examine this possibility, experiments were performed
comparing the Euler and the Runge—Kutta routines for two different analytic flow-
fields plus a turbulent component (see Annex 1). Histograms were created of the dif-
ference between endpoint positions for the two routines for 5000 different particle
releases. These histograms resembled zero-mean Gaussian distributions, indicating
that the difference between the two routines was random, not systematic. This sug-
gests that the error introduced by use of an Euler stepping routine, in the presence of
turbulence, itself looks “turbulent” and may reduce concerns about the relative accu-
racy of this scheme. Although the Euler scheme may be adequate for some situations,
the effect of different discretization techniques on biological predictions has not been
investigated and should be assessed in the context of specific modelling objectives.

2.1.3 Choice of time-step

In an RDM, as in any numeric algorithm for discretizing a continuous-time phe-
nomenon, the time-step should be smaller than time constants of the system. This
leads to upper bounds on the time-step (Thomson, 1987; Wilson and Flesch, 1993).
The exception to this general rule is the Lagrangian time-scale characterizing the
decorrelation of turbulent velocity fluctuations. RDMs are accurate descriptions of
turbulent dispersal only on time-scales larger than the Lagrangian time-scale, so there
is no reason to force the time-step below the Lagrangian time-scale.

For pure stationary diffusion in one dimension with diffusivity D(z) (m?2s"), the time
constants D/(0D/9dz)? and 1/192D/0z2| describe when the expected change in diffusiv-
ity is larger than the diffusivity itself and, therefore, provide upper bounds on the
time-steps. The time-scale of vertical mixing will, in most applications, be signifi-
cantly larger; for Couette flow (the flow between two planes moving relative to each
other), the half-time of the slowest mode of vertical mixing is H2(log 2)/(8 max:
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(D(2))), where H is the water depth. This time-scale can be used as a rough measure
of vertical mixing in other flows as well, or more accurate time-scales can be obtained
analytically or numerically for the specific flow.

Additional time-scales may characterize horizontal motion or other (e.g. biophysical)
processes. The chosen time-step must ensure that all processes are accurately re-
solved. For an example of the effects of different choices of time-step see Annex 2.

2.1.4 Number of particles

A single-particle trajectory in a turbulent flowfield can be considered one trial of a
statistical ensemble of which we are interested in the ensemble-averaged behaviour.
If too few particles are released in a particle-tracking experiment, it is possible that
the trajectories are polluted by statistical outliers and do not satisfactorily represent
the desired ensemble average. There is a risk that this can lead to erroneous conclu-
sions. Although there is no generic answer to this problem, we recommend that at
least some tests be done to check whether or not sufficient particles are being used;
for example, an experiment to measure the concentration of particles in some down-
stream grid cell at a given time after release (where concentration = # particles in grid
cell/total number released) and repeating this experiment for an increasing total
number of particles. This concentration, as a function of the total number of particles,
will stop fluctuating when a sufficient number of particles are being used. For more
details on such techniques, see Brickman and Smith (2002). In general, the oceano-
graphic literature contains numerous instances of poorly performed particle-tracking
experiments. The basic premise of performing a particle-tracking experiment should
be the ability to do it correctly. There is no excuse for using too few particles.

2.1.5 Choice of random number generator

The random number generator should perform well enough to ensure that the results
are not artefacts of the particular algorithm. Some fairly common random number
generators have been demonstrated to be flawed; these generators have typically
been included in general-purpose development environments, as opposed to envi-
ronments designed specifically for scientific computing. The typical problems with
poor generators are short periods and correlation in the random numbers. Short peri-
ods mean that the sequence of random numbers repeats itself too soon. Correlation in
the random numbers may result in incorrect dispersion: either too weak or too
strong, depending on the correlation pattern. Both flaws seriously undermine the
credibility of the study.

There is no reason to use a random number generator with insufficient performance.
It may be easier to obtain and install a state-of-the-art generator than to determine the
properties of the built-in generator. Currently, the “Mersenne Twister” seems to be
the strongest algorithm; this is, for example, the default generator in R and is also
available in Matlab. C source code, made by the original designers of the algorithm, is
available at http://www.math.sci.hiroshima-u.acjp/~m-mat/MT/emt.html. Source
code in other languages and a list of libraries that include the algorithm can be found
at http://www.Wikipedia.org under Mersenne Twister.

A general introduction to random number generators can be found in Ross (2001)
and similar textbooks on stochastic simulation. The standard tool for verifying built-
in random number generators is Marsaglia’s Diehard battery of tests (see
http://www stat.fsu.edu/pub/diehard/).
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2.1.6 Boundary conditions

The boundary conditions for an RDM are similar to those for an ocean circulation
model, that is, a condition of no flux through the boundaries. For an RDM, this means
that no particle should cross a boundary or, equivalently, that particle numbers
should be conserved. This is important because the calculation of particle concentra-
tions, or probability density functions (PDFs), can be incorrect if particles are lost
from the domain. This boundary condition is enacted as a reflection scheme. How-
ever, the requirements of this scheme can be non-trivial, as certain properties have to
be maintained upon reflection, especially the WMC. An incorrect reflection scheme
can lead to spurious particle concentrations near boundaries. For an LSM, these re-
quirements have been determined (Wilson and Flesch, 1993), but for the RDM, they
are less clear. In practice, many of the theoretical requirements for a boundary reflec-
tion scheme are not met, but this does not seem to have any great effect on the result
(Legg and Raupach, 1982).

Owing to the various uncertainties in the theory and practice of boundary reflection
schemes, no simple best practice can be recommended, except to state that such a
routine is required for a valid particle-tracking model. Experience indicates that these
schemes can be complicated to code and should be tested carefully before proceed-

ing.
2.1.7 Additional considerations

2.1.7.1 The use of discrete circulation model fields

Most particle-tracking models rely on space- and time-discretized fields from an
ocean circulation model. A number of problems can arise because of this, including
interpolation within grid cells near model boundaries and the use of discretized tur-
bulence quantities.

e Interpolation within grid cells near model boundaries. Circulation mod-
els typically have no slip and no flux boundary conditions on velocity, so
that flow runs parallel with closed boundaries. The determination of the
velocity within such boundary cells can be complicated, especially where
flows are “turning corners” following a coastline. This can result in parti-
cles erroneously crossing a boundary as a result of the combination of ve-
locity and time-step, or drifting in an incorrect direction (see test case,
Section 2.2.2 Flow around an obstacle). The addition of turbulence to this
process is a further complication resulting in the expenditure of significant
coding and execution time handling particle tracking near boundaries. The
best practice recommendation in this case is to be aware of this problem
and to check carefully that the algorithm is performing correctly.

e The use of discretized turbulence quantities. Circulation models can pro-
duce discontinuous turbulence fields, particularly in the vertical dimen-
sion. The particle-tracking model (Equation 1) requires values and
derivatives of these quantities, which can lead to problems in the correct
prediction of particle positions if these fields are sufficiently non-smooth
(Brickman and Smith, 2002; Thygesen and Adlandsvik, 2007). A solution
can be to smooth these fields before use (Brickman and Smith, 2002; North
et al., 2006), but it is difficult to determine the degree to which this is neces-
sary or successful in a complicated model setting. The best advice in this
case is to be aware of this problem, proceed carefully, and check that the
algorithm is performing correctly whenever possible.
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2.1.7.2 Backwards particle tracking

In problems of egg/larval drift, we often have an estimate of the distribution of eggs
or larvae, provided by survey data, but incomplete knowledge of the release area of
the propagules. In other words, we often have more data at the endpoint than at the
starting point. One benefit of the particle-tracking technique is the ability to reverse
time and perform backward particle tracking in order to find the most likely origin
for observed propagules. For example, we consider the case of truly planktonic parti-
cles in a flowfield u that is divergence-free and does not cross boundaries. In this
case, it is reasonable to use the simple one-dimensional, time-reversed, Euler scheme:

Xi_gt = X — U(X) dt + VK(x,) dt + /2K(x,)dt Q, ()

where Q has the same meaning as in Equation (1). Starting from the final position and
time (x, tf) when the simulation reaches the starting time to, the density of larvae at
any position xowill be proportional to the likelihood function of the initial condition
x0, viewed as an unknown parameter. (For more details on this example, see Thyge-
sen, in prep.). Other papers on biophysical backward particle tracking include
Batchelder (2006) and Christensen et al. (2007). A paper to be recommended from the
atmospheric literature is Flesch et al. (1995).

2.1.7.3 Coupling particle tracking with continuous fields from NPZ models

There are several issues to consider when coupling particle-tracking models to the
continuous fields generated by nutrient-phytoplankton-zooplankton (NPZ) models.
The continuous fields are the spatially explicit, physics-related outputs (e.g. velocities
used for advection-diffusion movement of the particles) and biologically related out-
puts (e.g. zooplankton densities as prey for the particles) generated by the NPZ
model. Some of these issues relate to the quality of these continuous fields, whereas
other issues relate to the mechanics of how the particles are coupled to the fields.

The first issue is the quality of the outputted fields from the NPZ, including the over-
all stability of the NPZ model, the realism of the NPZ-related parameter values, the
formulation of the predation-closure terms used to impose mortality on the zoo-
plankton, and the information on model performance provided by data assimilation
and validation efforts (see Annex 3).

The second issue also influences the quality of the fields and involves the way in
which the NPZ submodel is coupled to the physics model. Issues such as whether the
NPZ is run online or offline with the physics, and the compatibility of the spatial and
temporal resolutions between the NPZ and physics models, affect the realism and
quality of the outputted NPZ fields (see Annex 4).

The third issue relates to how the particles are coupled to the NPZ fields (see Annex
5), for example, whether or not a sufficient number of particles (e.g. larval fish) are
followed in order to properly represent their interactions with prey patchiness, the
fact that one-way coupling prevents trophic feedback from the particles to their prey
and from prey exhibiting avoidance behaviours or other responses, and the degree to
which movement of particles (e.g. larval fish) is purely physics-driven or involves
active behaviour (e.g. vertical migration, swimming). Addressing the patchiness, tro-
phic feedback, and prey-response issues requires the NPZ and particle-tracking mod-
els to be solved simultaneously using a large number of particles. How to meld
advective and behaviour modes of movement remains an open question. Both the
active behaviour of the particles and the reactions of the prey can change the trajecto-
ries of the particles (individuals in the model) and the predicted densities of the prey.
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Test cases

In this section, we present a number of test cases designed to test the performance of
a particle-tracking routine and illustrate problems that can arise when interpolating
near boundaries.

2.2.1 Vertical distribution of buoyant particles

2.2.1.1 Purpose

The purpose is to test how well the particle-tracking code handles buoyant particles,
especially in relationship to the surface and bottom boundary conditions.

2.2.1.2 Background

The need to handle non-neutral particles arises in many applications, including
phytoplankton, sediments, or, in this test case, fish eggs. The stationary case was
treated by Sundby (1983). The general problem is easily handled in the Eulerian (con-
centration-based) setting. A Matlab toolbox was developed by Adlandsvik (2000).
This point of view has been adopted for the sampling of anchovy and sardine eggs
using the Continuous Underwater Fish Egg Sampler (CUFES; Boyra et al., 2003). For
particle tracking, the binned random walk part of this test case was given by Thyge-
sen and Adlandsvik (2007).

2.2.1.3 Analytical solution

This test case considers a one-dimensional water column with non-neutral particles
with a buoyant velocity w and eddy diffusivity K. The vertical coordinate z points
upwards, with z=0 at bottom and z=H at the surface. The concentration @ of parti-

cles is governed by the Eulerian conservation law,

[N _ 9(k9¢
8t+8z(w¢) B az(K azj_ 3)

The boundary conditions are zero flux through the surface:
wg = K, z = OH.
for4 (4)

The solution evolves towards a stationary solution where the flux is zero in the whole
water column. With constant coefficients, this ordinary differential equation gives a
truncated exponential distribution. With m =w/K and a vertical integrated concentra-
tion @, this can be written

= O e,
¢ emH _1 (5)
This has mean height above bottom
1 H
lu = H -+ mH
moe™ -1, ©)

and variance

ot = 2e™ —m?H? -2mH -2 2
- 2 (o mH - .
m-(e™ -1) @)

Further details are given in Sundby (1983) and Adlandsvik (2000).
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2.2.1.4 Specification

The specific values used for this test case are given in Table 2.2.1. These values give a
stationary mean depth (from surface) of 9.25m and a standard deviation of 8.34 m.
The particles are released 12.5 m above bottom, and the simulation time is 48 h.

Table 2.2.1. Variable settings for the buoyant test case.

VARIABLE VALUE UNIT
H 40 m

w 0.001 ms!
K 0.01 ms=2

2.2.1.5 Continvous random walk model

The continuous random walk model (i.e. RDM) for this problem with constant coeffi-
cients is implemented in a Euler—Forward fashion by,

Z™ = Z" + wAt +v2KAtQ, ®)

where Z is displacement and Q is a random variable with zero mean and unit vari-
ance. The boundary conditions are more difficult; the usual reflective boundary
scheme at the surface,

Z™ « 2H -—Z""1,if Z1>H, 9)

corresponds to

o¢
2L - o,
oz (10)

which differs from the correct boundary condition in Equation (4). In fact, the ana-
lytical stationary solution has the maximum of the derivative at the surface.

The number of particles in this test case is 40 000. Two different time-steps, 5 and
30 min, are considered, and a Gaussian distribution is used for the random walk. The
5min case has also been run with a uniform (top-hat) distribution for the random
component. The reflective boundary condition is applied. For the plot, the particles
have been counted in 1 m bins.

The result demonstrates that the RDM solutions are good (Figure 2.2.1) except when
they are close to the surface, where they underestimate the concentration. The height
of the boundary zone depends on when the particle movement is influenced by the
boundary, that is, the length scales wAt and V2KAt. In this case, the shape of the ran-
dom walk distribution influences the result, where the Gaussian shape is superior to
the top-hat. This is probably caused by the top-hat distribution giving higher prob-
abilities further from the mean, making the random walk “feel” the boundary at
longer distance.

2.2.1.6 Binned random walk
The binned random walk does not have boundary problems because it is constructed

by finite volume methods for the advection-diffusion equation (see Thygesen and
Adlandsvik, 2007). The water column was discretized into eight uneven bins, with
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depths of 10, 5, 5, 5, 5, 5, 3, and 2m, counted from the bottom. The time-step used
was 5min, and both the first-order upstream and a second-order scheme were con-
sidered. The results are given in Figure 2.2.2. This figure also shows the analytical
solution, averaged into the same bins. The upstream solution shows too much mix-
ing: underestimating the concentration near the surface and overestimating it near
the bottom. The second-order method follows the analytical solution well but over-
shoots near the surface.
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Figure 2.2.1. Results for the continuous random walk model.
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Figure 2.2.2. Results for the binned random walk model.

2.2.2 Flow around an obstacle

2.2.2.1 Purpose

The purpose is to test how different horizontal advection implementations handle a
curved flowfield and a land obstacle.

2.2.2.2 Background

Non-rotational flow around a cylinder is one of the classical examples considered in
almost all hydrodynamics textbooks. Of particular interest is the book by Bennett
(2006), which takes a Lagrangian point of view.

2.2.2.3 Analytical considerations

The example is considered in a coastal oceanographic setting; the cylinder becomes a
circular island. As the example is symmetric, only the upper half is considered. That
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is, we consider a straight coast at y=0 with ocean in the upper half plane (y>0) and
with a half-circular peninsula with centre (xo,0) and radius R.

The steady non-rotational flow is given by a stream function

u,R?
o™ Y Uy,

oo m_ (11)

where uo is the along-coast velocity far from the obstacle. The stream function is nor-
malized so that the land boundary is given by the contour ¢y =0. The flow follows the
streamlines, that is, isolines of ¢ with higher values to the right, more precisely

u = _57(// = UO—UORZM;_{ZZ
oy (X=%)"+Yy°) (12)
and
vV = al _ —ZUORZ (X_)Z(o)y22
ox ((X=%)"+y")" (13)

According to Bennett (2006), it is unlikely that analytical expressions will be found for
the time-dependent particle movement in this example. Bennet does, however, pro-
vide an analytical description of stream lines. The “exact” solution shown below is
obtained by using converged Runge—Kutta with a small time-step (365s), using the
analytical expression above for the velocities without interpolation. The dashed
stream lines are simply obtained by contouring the discretized version of the stream
function.

2.2.2.4 Specification

A domain of length L along the coast and width W is considered. The peninsula
centre is at x=0.5 L and the radius R=0.32 W. The numerical values are specified in
Table 2.2.2.

Table 2.2.2. Variable settings for the peninsula test case.

Variable Value Unit
L 100 km
w 50 km
/7] 1 ms-t

The domain is discretized by Ax=Ay=1km. The grid coordinates are chosen so that
grid cell (i, j) has its centre at (x, y) = (iAx, jAx) for i=0,...,99 and j=0, .. ., 49. The
velocities are sampled in an A-grid, that is, in the grid centres. Denoting the velocity
arrays U and V, we have

UG, j)=u(idx, jAx), VG, j)=v(idx, jAx), (14)

where u and v are given by the analytical formulas above. The velocities are set to
zero at land, that is, where ¢ <0, in particular U (i, 0)=V (i, 0)=0. The initial particle
distribution is 1000 particles on a line perpendicular to the coast:

Xk=3, Yi=0.45 + 0.045k for k=1, ...,1000. (15)

The simulation time is 24 h, for which the particles would be transported 86.4 km
with the reference velocity uo.
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2.2.2.5 Simulations

The first-order Euler forward and the Runge—Kutta fourth-order method are consid-
ered. Both methods are used here with bilinear interpolation to interpolate from the
grid-cell centres to the particle positions. The treatment of boundaries is simple, with
the zero land velocity interpolated to the particle position and no reflection scheme
implemented. This procedure may leave particles on land, but in the absence of tur-
bulence, this was not considered to be important. A time-step of 1h was used for
both methods. The results from this test are presented in Figure 2.2.3. Far from the
peninsula, both methods recapture the exact solution (green, red, and black symbols
overlap). Close to the peninsula, the Euler method fails, leaving a trail of particles
clearly separated from the peninsula. The Runge—Kutta method performs better,
leaving a tiny tail of particles very close to the peninsula that do not overlap those
produced by the exact solution.

_ - —| eese start position
ssse oxact solution

ssse Eyler-Forward
_ - -=--| esee Runge-Kutta

= -

= e

3 IR

c -~ —_——

il - - -

_'E\ = ™ " gg T~

e e . e, %

i

20 40 &0

distance [km]

Figure 2.2.3. Peninsula test case.

The velocities from the formulas above are also defined for ¢ >0, giving a circulation
within the “peninsula”. Using these velocities in the interpolation and intermediate
Runge—-Kutta steps gives a reference solution with ideal land treatment. This land
treatment makes the Runge—Kutta indistinguishable from the exact solution and also
improves the results from the Euler method. These results are shown in Figure 2.2.4
in which symbols for the Runge-Kutta method overlap those of the exact solution.
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Figure 2.2.4. Peninsula test case with circulation within the “peninsula”.
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2.2.2.6 Comment

This test was designed to demonstrate the difference between the Euler method and
higher order methods, such as Runge—Kutta, and to point out problems associated
with interpolation near boundaries. No random walk diffusion has been applied,
which could reduce the advantage of higher order methods (see Annex 1). Also,
shorter time-steps improve the performance of both models and may decrease the
difference between them.



