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A one spatial-box version of the NEMURO oceanic lower trophic food web model was applied

to a coastal upwelling environment typified by West Coast Vancouver Island. We used both

ad hoc calibration and the automatic calibration program PEST. NEMURO was first calibrated

to 1 year of monthly field data using the usual ad hoc approach of trial and error changes

to 18 candidate parameters. Four PEST calibrations were then performed. The first three

PEST calibrations used model predictions in year 10 from the ad hoc calibration as data

in a twin experiment design; the fourth PEST calibration repeated the ad hoc procedure

by having PEST calibrate NEMURO to the field data. When provided with ad hoc calibra-

tion model predictions as data, PEST accurately recovered the known 18 parameter values,

even when small and large phytoplankton were lumped into total phytoplankton. When 57

parameters were allowed to vary PEST-estimated reasonable values for all 57 parameters,

but they differed from the ad hoc calibrated values. However, when applied to the field data,

PEST-estimated parameter values that differed greatly from the ad hoc values. The PEST

calibration fitted some of the field data better than the ad hoc calibration but at the cost

of unequal small and large phytoplankton concentrations. Thus, with proper and careful

implementation, PEST offers a viable approach for objective calibration of NEMURO to site-

specific monitoring data. We recommend that automatic calibration methods, such as PEST,

be used for application of the NEMURO model to new locations. When the field data allow

for specification of time series for each phytoplankton and zooplankton state variable, PEST

will provide an objective, defensible, and repeatable way to calibrate the many parameters

of the NEMURO model. If the available data are insufficient for specification of each state

variable, then ad hoc calibration will likely be needed to allow for inclusion of qualitative

decisions about model fit. Use of PEST in this situation will provide better understanding of

the data-model mis-matches and will provide an alternative calibration to the necessary,

but subjective, ad hoc calibration. Comparison of the ad hoc and PEST calibrations (even
if unsuccessful) will help in the interpretation of the ad hoc calibration. Robust parameter

estimation by any method depends on the quality and consistency of the calibration dataset.
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. Introduction

alibration of complex ecological models that have many
otentially adjustable parameters has long been an issue in
cological modeling (Swartzman and Kaluzny, 1987). Most
ften an ad hoc calibration method is used whereby the mod-
ler manually adjusts parameters until the fit between pre-
icted and observed state variables are subsequently deemed
close enough” (Eckhardt and Arnold, 2001; Vrugt et al., 2003).
owever, one is never sure if the calibrated values are unique
r optimal, and whether a different modeler would obtain the
ame values (Rose et al., 1991). One person’s good fit between
redicted and observed values is often another person’s poor
t.

A variety of automatic methods for objective calibration of
ydrological and water quality models have been proposed.
utomatic, or mathematically formal calibration methods,
re also sometimes referred to as data assimilation meth-
ds, although data assimilation also includes other variants
uch as sequential updating of model initial conditions and
ata smoothing and interpolation (Robinson and Lermusiaux,
002). Examples of automatic calibration methods include the
se of simulated annealing (e.g., Matear, 1995), genetic algo-
ithms (e.g., Mulligan and Brown, 1998), the adjoint method
e.g., Schartau et al., 2001), and Bayesian-related methods (e.g.,
rugt et al., 2003). Vallino (2000) and Freedman et al. (1998)
ompared the performance of different optimization algo-
ithms, while Madsen (2000) investigated multiple objective
unctions and Boyle et al. (2000) examined how to combine

anual and automatic methods. These calibration methods
hare the general approach (Freedman et al., 1998; Vallino,
000) of specifying an objective function based on data-model
oodness-of-fit, and using accumulated information from pre-
ious model runs to determine how to change parameter val-
es for subsequent runs. This is repeated until a minimum for
he goodness-of-fit function is found; often checks, via using
ew starting parameter values or applying perturbations to
arameter values, are then made to ensure the minimum is a
lobal minimum of the objective function.

North Pacific Marine Ecosystem Model for Understand-
ng Regional Oceanography (NEMURO) is a nutrient–
hytoplankton–zooplankton food web model that was
eveloped as part of an international effort (Werner et al.,
his issue), and is being applied to a variety of locations in
he North Pacific. Examples of applications to date include
EMURO embedded in a one-dimensional vertical mix-

ng model and applied to monitoring data at Station A-7
Yamanaka et al., 2004) and Station KNOT (Fujii et al., 2002),
mbedded in a three-dimensional ocean circulation model
nd examined at Stations P, A-7, and KNOT (Aita et al., 2003),
sed as one of four alternative models to simulate particle
uxes in the Western Pacific (Kishi et al., 2004), and used
o asses the effects of vertical migration of zooplankton at
tation A-7 (Yoshie et al., 2003) and the importance of the
icrobial food web off Hawaii (Smith et al., 2005). Herring
nd saury bioenergetics growth models have also been cou-
led to NEMURO (Megrey et al., this issue; Ito et al., 2004).
ngoing activities include further development of the bio-
eochemical processes represented in NEMURO, application
2 0 2 ( 2 0 0 7 ) 38–51 39

of NEMURO to other locations, and use of NEMURO coupled
with bioenergetics models to examine climate effects on fish
growth.

An important issue with the application of NEMURO, and
other ecological models, is how to apply them in an objective
way to different locations. Calibration is needed and appro-
priate, but how to calibrate the model remains an issue. Each
modeler has their favorite parameters and opinions about the
quality of the data and goodness of fit criteria (i.e., how close is
close enough). Calibrating NEMURO to other locations is espe-
cially relevant as we pursue using NEMURO, as one mathe-
matical expression of a nitrogen–phytoplankton–zooplankton
model, to compare food web dynamics and fish growth among
different geographic regions. Interpretation of model results
as indicative of geographic differences in food web dynamics
and fish growth requires that NEMURO be applied to the differ-
ent regions in an objective and consistent manner. Otherwise,
model predictions of geographic differences can be con-
founded with location-specific model calibration decisions.

The objective of this paper was to evaluate the utility and
feasibility of using automatic calibration to apply NEMURO
to a coast-like environment. Most NEMURO applications have
involved open ocean locations. One direction in the contin-
ued development of NEMURO is to include herring that inhabit
coastal areas. Megrey et al. (this issue) couple the version of
NEMURO calibrated in this paper to a herring bioenergetics
model. While Wainwright et al. (this issue) applied NEMURO,
embedded in a two-dimensional spatial grid, to a coastal envi-
ronment (California Current system), they used a version of
NEMURO that used somewhat simplified kinetics and con-
stant water temperature. We needed a version of NEMURO
that could be used as part of analysis of herring growth for
a coastal upwelling system. We used data from West Coast of
Vancouver Island (WCVI) as the basis for calibrating NEMURO
to a coastal system. WCVI is a good candidate for evaluating
calibration methods because of the extensive field data on the
lower trophic levels (Robinson and Ware, 1999; Mackas et al.,
2004) and because we knew the next step was to attempt to
the simulate herring dynamics in that region (Megrey et al.,
this issue).

In this paper, we calibrate NEMURO to a coastal environ-
ment using the usual ad hoc method (manual adjustment of
parameter values) and the PEST (Doherty, 2004) automated cal-
ibration method. The PEST method uses similar algorithms
as other commonly used methods (e.g., variational adjoint
technique—Friedrichs, 2002), but has the added advantage of
being able to be used with an external model code thereby
reducing the need for new coding. We first briefly describe the
NEMURO model, and how we modified NEMURO for a coastal
upwelling system. We then describe and present the results
of an ad hoc calibration and four PEST calibrations, all based
on 1 year of monthly phytoplankton and zooplankton data.
All calibrations started with the same set of parameter val-
ues. The first three PEST calibrations used the ad hoc calibra-
tion results as observed data and were designed to determine
if PEST could estimate known parameter values, the effect

of lumping state variables, and the effect of allowing many
parameters to be varied. Use of the same model to generate the
data and then recover parameter values from the generated
data is sometimes referred to as an “identical twin experi-
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ment” (Robinson and Lermusiaux, 2002). Identical twin exper-
iments are commonly used to evaluate automatic calibration
methods (e.g., Harmon and Challenor, 1997). The fourth PEST
calibration used the assembled field data as observed data
and was designed to see if PEST could successfully calibrate
NEMURO to our coastal field dataset, and if so, how PEST-
estimated parameter values compared with our ad hoc esti-
mated values. We conclude with a discussion of the lessons
learned from our calibration effort, and the general merits of
using automated parameter estimation methods such as PEST
for calibrating ecological models for regional comparisons.

2. Description of NEMURO

NEMURO implemented in this paper simulates the dynamics
of the nutrient–phytoplankton–zooplankton food web in a sin-
gle well-mixed spatial box that represents the surface layer of
the water column (Fig. 1; Kishi et al., 2007). The food web is rep-
resented with eleven state variables: nitrate (NO3), ammonium
(NH4), small phytoplankton (PS), large phytoplankton (PL),
small zooplankton (ZS), large zooplankton (ZL), predatory zoo-
plankton (ZP), particulate organic nitrogen (PON), dissolved
organic nitrogen (DON), particulate organic silicon (Opal), and
silicic acid (Si(OH)4). All state variables are tracked in the units
of (�mol N) L−1; silicon variables are converted from nitrogen

using constant silicon to nitrogen ratios. NEMURO is a system
of 11 coupled ordinary differential equations, with an equa-
tion for the rate of change of each state variable. NEMURO was
solved using a fourth-order Runge–Kutta solution technique

Fig. 1 – Food web diagram of the 11 state variables represented i
flows of nitrogen and silicon (reproduced from Kishi et al., this is
eliminated for application in this paper.
2 0 2 ( 2 0 0 7 ) 38–51

with an integration time step of 1 h. The fluxes between the
state variables are shown in Fig. 1 for nitrogen (solid arrows)
and silicon (dashed arrows). The driving variables are annual
cycles of daily water temperature, daily incident solar radi-
ation, and the mixed layer depth (and associated fluxes of
nutrients into the modeled box).

The rate of change of each state variable is expressed as the
sum of process rates that affect that state variable. Photosyn-
thesis, respiration, excretion, predation by zooplankton in the
model and other (not accounted for by simulated zooplankton)
mortality affect each phytoplankton state variable; grazing,
egestion, excretion, predation by zooplankton, and other mor-
tality affect each zooplankton state variable. Nutrient state
variables are reduced by photosynthesis uptake, increased by
various combinations of phytoplankton and zooplankton res-
piration, excretion, mortality, and converted among nutrient
forms via first-order, temperature-dependent decomposition
reactions. Phytoplankton photosynthesis, respiration, and
mortality, and zooplankton grazing and other mortality,
are all temperature-dependent. Parameters are expressed
as rates at 0 ◦C, and Q10 functions are used to adjust these
rates each day based on the simulated water temperature.
Photosynthesis also depends on the average light (integrated
over the water column) and nitrate and ammonium con-
centrations, with photosynthesis of large phytoplankton
(diatom-like) also dependent on silicic acid. Grazing by zoo-

plankton is dependent on the concentrations of prey using a
formulation in which an Ivlev parameter governs how quickly
maximum grazing rates are approached with increasing prey
concentrations.

n the NEMURO model showing the key processes and the
sue). Vertical migration of the large zooplankton was
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Fig. 2 – Driving variables used as representative of the
coastal waters of West Coast Vancouver Island (WCVI) area.
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a) Daily water temperature and incident solar radiation
nd (b) mixed layer depth.

We modified the driving (abiotic) variables of NEMURO
o crudely represent a coastal upwelling system, and we
liminated the seasonal vertical migration of the large zoo-
lankton. We formulated functions that generated daily water
emperatures and incident solar radiation representative of
he WCVI area (Fig. 2a). We modified the open-ocean formu-
ation for the mixed layer depth and nutrient fluxing from
elow from previous applications to roughly approximate an
pwelling system. Mixed layer depth was set to 80 m for 26
eptember–30 March, and to 30 m for 9 April–6 September

Robinson et al., 1993), with linear interpolation over 10 days
or each of the transitions (Fig. 2b). The influence of the
easonal dynamics of the mixed layer depth on NEMURO
redictions deserves additional investigation as recent infor-
ation on mixed layer depth suggest shallower depths may

e appropriate (Thomson and Fine, 2003). Flux of nitrate into
he modeled box was computed as the difference between
he concentration in the modeled box and 25.0 �mol N L−1,
imes an exchange rate. We coupled the nitrate flux into the

odeled box to the changes in the mixed layer depth by
ssuming the computed flux when the mixed layer depth was
0 m, and five times the computed flux whenever the mixed
ayer depth was less than 80 m. Because of the shallow waters
n this coastal environment, we eliminated the seasonal ver-
ical migration of the large zooplankton. Large zooplankton
s always present in the modeled spatial box.

. Coastal field data
e opted to calibrate NEMURO to an idealized dataset repre-
entative of a coast-like environment similar to the WCVI. We
ecognize that representing a coastal upwelling system with a
2 0 2 ( 2 0 0 7 ) 38–51 41

single box model is difficult and unrealistic. A spatially explicit
approach that allows for inclusion of physical features critical
to realistic simulation of an upwelling system is presented by
Wainwright et al. (this issue). We were interested in generat-
ing zooplankton densities of similar magnitude and seasonal
patterns as a coastal upwelling system to use as prey for a
herring growth model described in Megrey et al. (this issue).

We used field data from WCVI and California Current sys-
tem to construct monthly values of total phytoplankton, small
zooplankton, large zooplankton, and predatory zooplankton
concentrations as the basis for calibration. These assembled
field data were from a variety of sources and time periods so
we constructed an idealized annual cycle of monthly values.
Our idealized dataset is not intended to represent a specific
year or an exact location. Only WCVI field data for monthly
concentrations were used in model calibration.

The primary calibration dataset consisted of multiple years
(1991–2001) of measured concentrations of total phytoplank-
ton (chlorophyll), small copepods, medium copepods, large
copepods, total zooplankton, and euphasiids for several loca-
tions off WCVI. The data were assembled from a variety of
sources: chlorophyll data from Richard Thomson at the Insti-
tute of Ocean Sciences (Fisheries and Oceans Canada, Sidney,
BC), and zooplankton data from Stephen Romaine via the
Institute of Ocean Sciences’ Zooplankton Database and Don-
ald McQueen at Aquatic Ecosystem Associates, Nanaimo, BC.
Our zooplankton data includes much of the zooplankton data
reported by Mackas (1992).

We assumed euphasiids in the monitoring data equated
to predatory zooplankton in NEMURO, and we then calcu-
lated the concentration of large zooplankton in NEMURO as
total zooplankton minus euphasiids. Because of the mesh size
used in the zooplankton sampling, the WCVI monitoring data
included zooplankton generally greater than 200 �m (i.e., not
microzooplankton). We refer to total zooplankton from moni-
toring data as total zooplankton greater than 200 microns and
equate total zooplankton greater than 200 �m with large plus
predatory zooplankton in NEMURO.

Estimation of monthly small zooplankton concentrations
was achieved by use of additional data reported for the
California Current. Wang (1998) reported concentrations of
nauplii, copepodites, and adult copepods for the California
Current. We computed monthly average concentrations of
each of these, and then computed the average ratio of nauplii
to copepodites plus adult copepods. We then applied this
ratio to the computed total copepods (small plus large) in the
WCVI dataset to obtain the monthly concentrations of small
zooplankton for NEMURO. We assumed that copepodites plus
adult copepods in Wang’s California Current data was similar
to the summed (greater than 200 �m) copepods in the WCVI
data. Our estimates of small and predatory zooplankton
concentrations are likely low because we only accounted for
nauplii in the small zooplankton (i.e., did not include het-
erotrophic flagellates and ciliates) and we did not explicitly
account for chaeotognaths (Mackas, 1992) in the predatory
zooplankton.
We used a third field dataset reported in Wainwright et al.
(this issue) for the California Current system as a secondary
source of information for model calibration. Wainwright et al.
(this issue) reported nitrate, total phytoplankton (chlorophyll),
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and total zooplankton for three different depths off of the
Oregon coast. These data were not used in the automatic cali-
bration but rather were used to provide some qualitative con-
firmation that the idealized WCVI monthly data were realistic.

The idealized monthly values in our calibration dataset
showed a broad peak of total phytoplankton (solid square
symbols in Fig. 3a), and showed zooplankton dominated by
the large zooplankton group (solid square symbols in Fig. 3c).
Monthly total phytoplankton and total zooplankton in the
calibration dataset were consistent with the concentrations
reported by Wainwright et al. (this issue) for the California
Current system (grey triangles in Fig. 3a and e).
4. Calibration methods

We used the ad hoc method and PEST to calibrate NEMURO
to the idealized coastal dataset. Ad hoc calibration was the

Fig. 3 – Idealized coastal dataset for WCVI (solid square), field da
model predictions from the ad hoc calibration (open circle). WCV
Current data was available for total phytoplankton, total zooplan
phytoplankton, (b) small zooplankton, (c) large zooplankton, (d) p
200 �m (ZL + ZP from NEMURO), and (f) nitrate.
2 0 2 ( 2 0 0 7 ) 38–51

usual manual adjustment of parameters values by one of the
authors (KAR) until we decided that plots of predicted monthly
total phytoplankton and zooplankton densities over 1 year
closely enough mimicked the observed values.

The second method was the use of an automated calibra-
tion method called PEST (Doherty, 2004). PEST uses a variation
of the Gauss–Marquardt–Levenberg algorithm to determine
the values of parameters that minimize the weighted sum of
squared deviations between predicted and observed values.
PEST approximates the relationship between observations
and model parameters using a Taylor series expansion, which
involves the Jacobian matrix (the matrix of partial derivatives
of observations with respect with parameters). PEST computes
the partial derivatives of the Jacobian matrix using central

differences; parameters are varied small amounts from the
current set of values, the model is rerun, and the deriva-
tives computed. New values of parameters are determined
(parameter update vector) based on using the Marquardt

ta reported for the California Current (grey triangles), and
I calibration data was not available for nitrate. California
kton (greater than 200 �m), and nitrate. (a) Total
redatory zooplankton, (e) total zooplankton greater than



n g 2 0 2 ( 2 0 0 7 ) 38–51 43

p
t
w
o
w
v
o
o
s
D
a
g

4

A
o
w
a
r
e
i
y
t
m
a
(

p
p
v
c
i
a
b
e
t
(
t
m
t
s
m

4

W
i
z
W
u
c
t
t
p
t
r
(
o
s

Fig. 4 – Predicted nitrate, phytoplankton, and zooplankton
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arameter (denoted �), which is based on the gradient of
he objective function (derivative of the objective function
ith respect to parameters). PEST stops searching when the
bjective function does not go lower over several iterations,
hen the changes in parameters dictated by the update

ector are very small, or when the number of iterations or
ther internal calculations are triggered. Published examples
f the use of PEST for model calibration involve a water
hed scale model of water flow (Al-Abed and Whiteley, 2002;
oherty and Johnston, 2003), a model of nutrient export from
stream (Baginska et al., 2003), and radionuclide transport in

roundwater models (Zyvoloski et al., 2003).

.1. Model simulations and starting parameter values

ll model simulations were for 12 years, with the annual cycle
f daily driving variables (mixed layer depth, nitrate influx,
ater temperature, and incident solar radiation) repeated year

fter year. Interannual differences in model predictions were
elatively small compared to the seasonal differences within
ach year. We focused our calibration on monthly values dur-
ng year 10 of the 12-year simulations, although any of the
ears would have yielded similar results. We also examined
he dynamics over the 12 years to ensure that the calibrated

odel was stable for multiple years, and that differences
mong alternative calibrations were maintained over years
i.e., differences were not just transient).

All calibration attempts started with a set of NEMURO
arameter values generally consistent with values used in
revious applications. We wanted a set of starting parameter
alues that generated phytoplankton and zooplankton con-
entrations different from our idealized coastal dataset (Fig. 3)
n order to set-up a challenging calibration problem. We used

recent set of parameter values that resulted from NEMURO
eing applied to monitoring data from Station A-7 (Yamanaka
t al., 2004). We changed the temperature effects parame-
ers for small and large phytoplankton respiration from 0.0519
Q10 = 1.68) used by Yamanaka et al. (2004) to 0.0693 (Q10 = 2.0)
o match the temperature effects parameter values used for

aximum photosynthetic rate and mortality rate. We refer to
hese parameter values as the starting values, and a model
imulation using these values differed from the idealized
onthly field data (see Fig. 4).

.2. Ad hoc calibration

e calibrated NEMURO by changing key model parameters
n an attempt to match the monthly total phytoplankton and
ooplankton concentrations time series of our coastal dataset.
e began with all model parameters at their starting val-

es. We restricted our adjustments to what we deemed 18
andidate parameters, keeping all of the other parameters at
heir starting values. The eighteen parameters we varied were
he maximum photosynthetic rates of small and large phyto-
lankton, the seven maximum grazing rates of the zooplank-
on, the three Ivlev grazing parameters, and the mortality

ates and temperature effect parameters of the zooplankton
Table 1). We selected these parameters based on our previ-
us experience with NEMURO. Yoshie et al. (2007) conducted a
ensitivity analysis of a one-box version of NEMURO applied to
for 12-year simulations using the starting values of
parameters and the ad hoc calibrated values of parameters.

Stations A-7 and P. They concluded that maximum photosyn-
thesis rates, maximum grazing rates, and the Ivlev parame-
ter and mortality-related parameters for predatory zooplank-
ton were important. Calibration consisted of adjusting any
of these eighteen parameters until we could get predicted
monthly values to mimic what we deemed important patterns
in our calibration dataset.

4.3. PEST calibrations

We performed four automated parameter calibrations using
the PEST software (Table 2). The first calibration was designed
to test whether PEST could estimate parameter values when
we know the parameter values that generated the data (i.e.,
identical twin experiment). We used the predicted monthly
values of small and large phytoplankton, and small, large, and
predatory zooplankton from year 10 of the ad hoc calibrated
simulation as observed data for PEST (Table 3). We began PEST
with our starting values and allowed PEST to adjust the 18 can-
didate parameters to try to match the ad hoc calibrated values
of phytoplankton and zooplankton. We compared parameter
values and NEMURO predictions between the ad hoc calibra-
tion and the PEST calibration.
The second PEST calibration was designed to confirm that
PEST could estimate known parameter values with the small
and large phytoplankton lumped into a single prediction vari-
able. Our calibration dataset synthesized from the monitoring
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Table 1 – The 18 candidate parameters of the NEMURO model varied in the ad hoc calibration and three of the four PEST
calibration simulations

Parameter Definition Units

Vmaxs Maximum photosynthetic rate at 0 ◦C of small phytoplankton d−1

Vmaxl Maximum photosynthetic rate at 0 ◦C of large phytoplankton d−1

Grmaxs Maximum grazing rate at 0 ◦C of small zooplankton on small phytoplankton d−1

Lams Ivlev constant governing grazing rate of small zooplankton �mol N−1

Morzs0 Rate constant at 0 ◦C of small zooplankton for quadratic mortality rate relationship L (�mol N)−1 d−1

Kmorzs Temperature effect on mortality rate of small zooplankton ◦C−1

Grmaxlps Maximum grazing rate at 0 ◦C of large zooplankton on small phytoplankton d−1

Grmaxlpl Maximum grazing rate at 0 ◦C of large zooplankton on large phytoplankton d−1

Grmaxlzs Maximum grazing rate at 0 ◦C of large zooplankton on small zooplankton d−1

Laml Ivlev constant governing grazing rate of large zooplankton L (�mol N)−1

Morzl0 Rate constant at 0 ◦C of large zooplankton for quadratic mortality rate relationship L (�mol N)−1 d−1

Kmorzl Temperature effect on mortality rate of large zooplankton ◦C−1

Grmaxppl Maximum grazing rate at 0 ◦C of predatory zooplankton on large phytoplankton d−1

Grmaxpzs Maximum grazing rate at 0 ◦C of predatory zooplankton on small zooplankton d−1

Grmaxpzl Maximum grazing rate at 0 ◦C of predatory zooplankton on large zooplankton d−1

Lamp Ivlev constant governing grazing rate of predatory zooplankton L (�mol N)−1

Morzp0 Rate constant at 0 ◦C of predatory zooplankton for quadratic mortality rate relationship L (�mol N)−1 d−1

Kmorzp Temperature effect on mortality rate of predatory zooplankton ◦C−1

Table 2 – Characteristics of the four PEST calibration simulations

PEST simulation Source of observed data No. of parameters allowed to vary Small and large phytoplankton

1 Ad hoc calibration 18 Separate
2 Ad hoc calibration 18 Combined
3 Ad hoc calibration 57 Separate
4 Idealized field dataset 18 Combined

The source of observed data used by PEST was either the output from the ad hoc simulation or the idealized coastal dataset. The number of
57 pa
iables
r a v
parameters varied was either the 18 candidate parameters (Table 1) or
phytoplankton groups were either treated as separate prediction var
on parameters were roughly order of magnitude (e.g., 0.01 and 10.0 fo

data had chlorophyll as the measure of total phytoplankton.
We repeated the first PEST calibration, including using the Sta-
tion A-7 calibrated values as starting values, but provided PEST
monthly values of small plus large phytoplankton, rather than
small and large phytoplankton as separate variables.

The third PEST calibration was designed to see the effects

of allowing PEST to vary more than the 18 candidate param-
eters. We allowed 57 parameters, including the 18 candidate
parameters, related to phytoplankton and zooplankton to be
varied by PEST.

Table 3 – Monthly concentrations (�mol N L−1) of phytoplankton
simulation used as observed data for PEST calibration simulati

Month Small phytoplankton Large phytoplankton Small

January 0.510 0.206
February 0.837 0.426
March 1.058 0.585
April 2.150 2.403
May 2.145 2.634
June 2.196 2.554
July 2.174 2.465
August 2.097 2.351
September 1.081 1.169
October 0.807 0.564
November 0.590 0.308
December 0.405 0.173
rameters related to phytoplankton and zooplankton. Small and large
or summed as a single variable of total phytoplankton. Constraints

alue of 0.4) for all four PEST simulations.

The fourth calibration was the application of PEST to
the field-estimated calibration dataset. Given the results of
PEST calibrations 1–3 showed that PEST could recover known
parameter values under separate and lumped small and large
phytoplankton and when various numbers of parameters
were allowed to be varied, we challenged PEST with the same

dataset we used as our starting point for the ad hoc calibra-
tion. We restricted PEST to calibrate the same 18 candidate
parameters we varied in the ad hoc calibration. We wanted to
see whether PEST, when presented with the same calibration

and zooplankton from year 10 of the ad hoc calibration
ons 1–3

zooplankton Large zooplankton Predatory zooplankton

0.054 0.094 0.096
0.065 0.160 0.103
0.067 0.263 0.139
0.079 0.420 0.191
0.075 0.431 0.237
0.079 0.409 0.227
0.079 0.410 0.219
0.078 0.410 0.217
0.064 0.352 0.217
0.058 0.208 0.178
0.057 0.150 0.149
0.053 0.102 0.119
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ituation as we faced in our ad hoc calibration, would generate
imilar model fits to the data with similar parameter values.

As with the ad hoc calibration, all PEST calibrations used
2-year simulations and based its goodness of fit on predicted
nd observed monthly values for year 10. All PEST calibra-
ions started with our starting parameter values. We used
og transformation option on all adjustable parameters (see
oherty, 2004), which allows for relatively large changes in
arameter values that helps the efficiency of the optimization.
inimum and maximum values for parameters were speci-

ed as roughly an order of magnitude in either direction. For
xample, a parameter value of 0.4 would have minimum value
f 0.01 and a maximum value of 10.0.

We summarize the fit to the calibration data (either the
d hoc model output or the field data) with the average of
he residuals (data minus predicted) and the largest (in abso-
ute value) individual residual. The averaged residuals relate
o the overall bias associated with model predictions, while
he largest absolute residual provides information on the gen-
ral magnitude of the residuals to ensure that small bias is not
ue to the canceling effects of very large positive and negative
esiduals. For PEST simulations 1–3, predicted daily concentra-
ions of phytoplankton and zooplankton concentrations over
he 12 years were virtually identical to concentrations from the
d hoc simulation. We simply note this in the results and refer
he reader to the ad hoc predictions shown in Fig. 4. Through-
ut the text, we refer to parameters by their names, which are
efined in Table 1.

. Results
.1. Ad hoc calibration

e were able to calibrate NEMURO to the idealized coastal
ataset by varying some of the 18 candidate parameters within

Table 4 – Starting values and the estimated values of the 18 can
PEST calibration simulations

Parameter Starting values Ad hoc

Vmaxs 0.4 0.49
Vmaxl 0.8 0.71
Grmaxs 0.4 0.31
Lams 1.4 0.4
Morsz0 0.677 0.877
Kmorzs 0.0693 0.1099
Grmaxlps 0.1 0.1
Grmaxlpl 0.4 0.23
Grmaxlzs 0.4 0.14
Laml 1.4 1.4
Morzl0 0.677 0.877
Kmorzl 0.0693 0.1098
Grmaxppl 0.2 0.11
Grmaxpzs 0.2 0.11
Grmaxpzl 0.2 0.20
Lamp 1.4 1.4
Morzp0 0.677 0.877
Kmorzp 0.0693 0.1099

a Calibrated value of the parameter is at minimum or maximum allowed
2 0 2 ( 2 0 0 7 ) 38–51 45

reasonable ranges of values (Table 4). Once the final ad hoc cal-
ibration was achieved, it turned out that four of the candidate
parameters (two Ivlev grazing parameters: Laml and Lamp;
two of the zooplankton maximum grazing rates: Grmaxlps and
Grmaxpzl) had not been changed from their starting values.
Predicted total phytoplankton, and predicted small, large, and
predatory zooplankton concentrations were similar in magni-
tude and exhibited similar seasonal patterns to the calibration
data (open circles versus solid squares in Fig. 3). The model-
calibrated peak of small zooplankton was flatter and did not
go as close to zero as the field data indicated (Fig. 3b). This
was deemed acceptable because we know from past experi-
ence that the NEMURO model has difficulty generating very
small starting and ending values of biomass for the small
and predatory zooplankton state variables. Predicted nitrate
concentration was similar in magnitude to nitrate concentra-
tions reported in the secondary dataset from the California
Current system (Fig. 3f). Once calibration was concluded, we
computed the averaged residual as −0.11 �mol N L−1, with the
largest individual residual value of −1.35 �mol N L−1 for total
phytoplankton in April.

Relatively large adjustments were made to some of the
18 candidate parameters that were allowed to be varied. For
example, the temperature effects on grazing parameters for
the small, large, and predatory zooplankton were adjusted
from its starting value of 0.0693 (Q10 = 2.0) to 0.1099 (Q10 = 3.0),
and some of the zooplankton maximum grazing rates were
significantly reduced, with the largest reduction being for
large zooplankton eating small zooplankton (Grmaxlzs: start-
ing value of 0.40–0.14 d−1).

Twelve-year simulations using starting values of param-
eters and ad hoc calibrated values of parameters illustrate

the magnitude of the calibration challenge (Fig. 4). Peak con-
centrations of calibrated large phytoplankton (Fig. 4c) were
almost twice the peak concentrations based on starting value
parameters, while peak concentrations of large and predatory

didate parameters for the ad hoc simulation and the five

PEST 1 PEST 2 PEST 3 PEST 4

0.49 0.49 0.52 0.56
0.71 0.71 0.81 0.25
0.31 0.32 0.33 0.086a

0.412 0.404 0.404 0.497
0.886 0.884 0.889 0.943
0.1099 0.1081 0.0905 0.0902
0.1 0.1 0.13 0.28
0.23 0.23 0.27 0.034
0.14 0.14 0.26 0.86a

1.4 1.4 1.38 0.1
0.877 0.875 1.035 0.196
0.1098 0.1099 0.0866 0.0294
0.11 0.11 0.15 0.054
0.11 0.12 0.17 0.21
0.20 0.20 0.25 0.15
1.4 1.4 1.216 1.16
0.877 0.879 0.977 1.183
0.1099 0.1098 0.0977 0.0490

value.
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zooplankton (Fig. 4e and f) were roughly half the peak concen-
trations based on starting value parameters.

5.2. PEST simulation 1

When presented with model predictions as observed data,
PEST-estimated values of the 18 candidate parameters that
were practically identical to the ad hoc calibrated values
(Table 4, PEST 1 versus ad hoc). The only differences were for
the Ivlev parameter for small zooplankton (Lams: 0.412 in PEST
versus 0.4 in ad hoc), and the mortality parameter for small
zooplankton (Morsz0: 0.886 in PEST versus 0.877 in ad hoc).
All residuals were very small and averaged 1.22 × 10−6 with
a largest single residual of 3.0 × 10−5 for small phytoplankton
biomass in October. Although PEST was given the opportunity
to change all 18 parameters, PEST correctly retained the start-
ing values of the four parameters unchanged during ad hoc
calibration. Given that most PEST-obtained parameters val-
ues were nearly identical to ad hoc-obtained values, predicted
concentrations of nitrate, phytoplankton, and zooplankton
with the PEST-estimated values were indistinguishable from
those using the ad hoc calibrated values shown in Fig. 4.

5.3. PEST simulation 2

PEST successfully estimated the known parameter values with
small and large phytoplankton combined into a single vari-
able of total phytoplankton (Table 4, PEST 2 versus ad hoc).
Nine of the parameters estimated by PEST had identical values
to the ad hoc calibrated values, and another seven parame-
ters only differed in their last digit (e.g., maximum grazing
rate of small zooplankton on small phytoplankton (Grmaxs)
was 0.32 by PEST versus 0.31 in ad hoc). The remaining two
parameters related to mortality of small zooplankton differed
the most between PEST and ad hoc calibrated values (Morzs0:
0.884 by PEST versus 0.877 in ad hoc; Kmorzs: 0.1081 by PEST
versus 0.1099 in ad hoc). Residuals were all small and aver-
aged 3.89 × 10−6, with the largest residual being 1.1 × 10−4 for
predatory zooplankton in October. Predicted phytoplankton
and zooplankton using the PEST-estimated parameter val-
ues were again virtually identical to the predicted concentra-
tions using the ad hoc calibrated parameter values shown in
Fig. 4.

5.4. PEST simulation 3

Increasing the number of parameters that could be varied to
57 affected how well PEST could estimate the known values
of the 18 candidate parameters (Table 4). The averaged and
largest residuals were 5.63 × 10−5 and −1.07 × 10−3 for small
zooplankton biomass in October, with PEST-predicted phyto-
plankton and zooplankton concentrations virtually identical
to the ad hoc calibrated concentrations shown in Fig. 4.

Ideally, in the extreme case of allowing 57 parameters to
be varied, PEST would have estimated the same values for
the 14 of 18 candidate parameters known to have been var-

ied in the ad hoc calibration. When we allowed 57 param-
eters to be varied, PEST generated reasonable values for all
57 parameters, including the 18 candidate parameters. The
largest differences among the candidate parameters between
2 0 2 ( 2 0 0 7 ) 38–51

PEST and ad hoc values were: 0.26 versus 0.14 for Grmaxlzs
and 1.035 versus 0.877 for Morzl0 (Table 4, PEST 3 versus ad
hoc). PEST correctly estimated values close to the ad hoc val-
ues for the four candidate parameter not changed during the
ad hoc calibration (Grmaxlps, Laml, Grmaxpzl, and Lamp).
PEST-calibrated values of the remaining candidate parameters
were similar, but not identical, to their ad hoc calibrated values
(Table 4).

5.5. PEST simulation 4

When confronted with the field dataset, PEST was marginally
successful in estimating values for the 18 candidate param-
eters that generated a reasonably close fit to the field data
(open circle versus close circle in Fig. 5). The PEST calibration
generated total phytoplankton (Fig. 5a) and large zooplankton
(Fig. 5e) concentrations that were similar to the field dataset;
predatory zooplankton concentration were similar but with a
delayed peak (Fig. 5f). As with the ad hoc calibration, PEST had
difficulty getting small zooplankton to exhibit sharp enough
peaks and low enough troughs (Fig. 5d).

PEST-generated phytoplankton and zooplankton concen-
trations appeared to be similar, or more similar, to the field
data as the ad hoc predicted concentrations (open circle ver-
sus open square in Fig. 5). The averaged residual was −0.0081
for the PEST calibration, which was lower than the averaged
residual of −0.11 obtained for the ad hoc calibration; the sin-
gle largest residual was 0.68 for PEST (total phytoplankton in
September) and 1.35 for the ad hoc simulation (total phyto-
plankton in April). PEST was better able to match total phy-
toplankton concentrations (Fig. 5a), large zooplankton con-
centrations (Fig. 5e), and total zooplankton concentrations
(Fig. 5g) than the ad hoc calibration. However, PEST achieved
its fit to total phytoplankton with higher small phytoplank-
ton and lower large phytoplankton than the ad hoc calibration
(Fig. 5b and c). Both PEST and ad hoc calibration had diffi-
culties with the peaks and troughs of the small zooplankton
(Fig. 5d) and predatory zooplankton (Fig. 5f). PEST predicted
reasonably close peaks and troughs of predatory zooplankton
but the predicted peak was delayed a few months compared
to the field data. The ad hoc calibration predicted the peak
concentration during the correct month but consistently over-
estimated predatory zooplankton concentrations. Predicted
nitrate concentrations were similar between the PEST and ad
hoc calibrations (Fig. 5h).

Most of the values of the eighteen candidate parameters
estimated by PEST differed from those determined by ad
hoc calibration (Table 4, PEST 4 versus ad hoc). For example,
maximum grazing rates of large zooplankton estimated by
PEST versus ad hoc calibration were: 0.28 versus 0.1 for
Grmaxlps, 0.034 versus 0.23 for Grmaxlpl, and 0.86 versus 0.14
for Grmaxlzs. Two parameters (Grmaxs and Grmaxlzs) were
estimated by PEST to have values at the minimum values we
allowed.

The differences in the fit of PEST and ad hoc calibration
to the 1 year of the field dataset (Fig. 5) manifested them-

selves in the long-term simulations (Fig. 6). PEST generated
higher peak concentrations of small phytoplankton (Fig. 6b)
and lower peak concentrations of large phytoplankton (Fig. 6c),
and slightly lower large zooplankton (Fig. 6e) and predatory



e c o l o g i c a l m o d e l l i n g 2 0 2 ( 2 0 0 7 ) 38–51 47

Fig. 5 – Idealized coastal data for WCVI (solid circle), and model predictions from the ad hoc calibration (open square) and
PEST calibration with PEST applied to the field data (open circle). WCVI calibration data was not available for small
phytoplankton, large phytoplankton, and nitrate. (a) Total phytoplankton, (b) small phytoplankton, (c) large phytoplankton,
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d) small zooplankton, (e) large zooplankton, (f) predatory zo
rom NEMURO), and (h) nitrate.

ooplankton concentrations (Fig. 6f). PEST generated small
ooplankton concentrations that were lower and peaked ear-
ier in the year than the ad hoc calibrated values (Fig. 6d).

. Discussion

ur situation is common to many modeling applications. We
anted to apply a model to new locations for which we had

imited data assembled from a variety of sources. In order for
s to interpret model prediction differences between locations
s truly location differences, we wanted to devise a consistent

cheme for model calibration. While we will never eliminate
odeler decisions involved with new model applications, we
anted to minimize and document these decisions as much

s possible. Automatic calibration methods can help eliminate
nkton, (g) total zooplankton greater than 200 �m (ZL + ZP

one source of arbitrariness in modeler decisions by standard-
izing how the model is calibrated to monitoring data at the
different locations.

Our analyses using the PEST software to objectively
calibrate NEMURO are encouraging. Under constrained
conditions, PEST-estimated known parameter values. PEST
simulations 1 and 2 were constrained and set-up almost
ideal conditions for automatic calibration by PEST. In PEST
simulations 1 and 2 we only allowed PEST to vary the 18
parameters we knew that we had considered varying in
the ad hoc calibration. For small and large phytoplankton
treated as two separate groups (PEST 1) and combined into

a single total phytoplankton variable (PEST 2), PEST was able
to estimate parameter values virtually identical to the true
ad hoc values (Table 4). When we increased the number of
parameters allowed to be varied by PEST to 57 in simulation
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Fig. 6 – Predicted nitrate, phytoplankton, and zooplankton
for 12-year simulations using the ad hoc calibrated values
of parameters and PEST-estimated values with PEST

applied to the field data.

3, estimated values of the eighteen candidate parameters
diverged from the ad hoc values but were all still realistic
(Table 4). Interestingly, PEST-estimated parameter values for
the three PEST simulations all resulted in almost identical
predictions of phytoplankton and zooplankton concentra-
tions as the ad hoc calibrated simulation. PEST appears to be
quite robust. We repeated some of the PEST calibrations using
different starting values for parameters and with some of the
numerical settings of PEST changed and obtained very similar
calibrated parameter values. Thus, with proper and careful
implementation, PEST offers a viable approach for objective
calibration of NEMURO to site-specific monitoring data.

Comparison of the ad hoc and PEST calibrations of
NEMURO to the field data (simulation 4) illustrated the poten-
tial arbitrariness and sublime decision-making inherent in ad
hoc model calibration and a potential pitfall of automatic cal-
ibration methods. When presented with a consistent dataset
(i.e., model predictions in PEST simulations 1–3), PEST was
able to recover known parameter values. When confronted
with the field dataset in simulation 4, PEST-estimated and ad

hoc calibrated parameter values differed (Table 4) and pro-
vided alternative fits or interpretations of the same field data
(Fig. 5). These differences in parameter values and fits were
important, as they generated somewhat different long-term
2 0 2 ( 2 0 0 7 ) 38–51

dynamics (Fig. 6). Although from a statistical viewpoint the
PEST calibration fitted the field data better than the ad hoc
calibration (averaged residuals of 0.0081 versus −0.11), we con-
sider the ad hoc calibration to be a more useful fit to the field
data in this specific situation. Some of the PEST-estimated
parameter values were near the extreme of reasonable
values, and total phytoplankton were dominated by small
phytoplankton. Without explicitly stating it, we realized that
during the ad hoc calibration we had decided that large phy-
toplankton biomass should be similar to or higher than small
phytoplankton biomass. This decision was simply based on
qualitative information and our experience in applying the
NEMURO to other, admittedly not coastal, locations (e.g., Fujii
et al., 2002; Yamanaka et al., 2004). We suspect that these
sublime decisions occur often with ad hoc calibration, and are
one of the major disadvantages to ad hoc approaches. This
information on the goal of wanting roughly similar or greater
biomass of large phytoplankton was not available to PEST,
who only saw field data on total phytoplankton. Thus, PEST
quite reasonably opted to fit the other zooplankton groups
better than the ad hoc calibration by satisfying the total phy-
toplankton with higher small phytoplankton and lower large
phytoplankton. It is not clear how to avoid these types of deci-
sions in ad hoc calibration or how to incorporate this kind of
qualitative information into an automatic calibration method
such as PEST. In particular, PEST allows for easy specification
of constraints on parameters, but not field data. Boyle et al.
(2000) suggest combining manual and automatic calibration
approaches by applying automatic calibration separately to
subsets of desired model behaviors, and then graphically
examining the tradeoffs between improving the fit on some
behaviors at the expense of decreased fit for other behaviors.

A variety of additional PEST simulations that used the
WCVI dataset beyond the PEST simulation 4 reported in this
paper was attempted. These included allowing all 57 parame-
ters to be varied, and providing PEST with small and large phy-
toplankton concentrations specified separately (rather than as
a single variable of total phytoplankton). All of these resulted
in similar fits to the field data with one or more parameters
at their minimum or maximum allowed values. One interpre-
tation of these results is that the WCVI field dataset, as we
constructed it from multiple sources and years of data col-
lection, was inconsistent with the NEMURO model. PEST can
estimate parameter values for small and large phytoplankton
using total phytoplankton if provided with consistent data on
total phytoplankton. Yet, PEST was unable to satisfactorily cal-
ibrate to the field data. This result suggests that we should
revisit how we constructed the idealized time series dataset.

Calibration results and estimated parameter values can
vary greatly if aggregated calibration variables (e.g., total phy-
toplankton) are used, and the benefit of automatic calibration
methods being objective also makes formal inclusion of some
constraints difficult. We could have continued to make the
PEST calibration more complicated by weighting field moni-
tored variables differently and down-weighting the troughs of
small zooplankton, but eventually we would be approaching

another version of an ad hoc calibration. Our results illustrate
the importance of understanding the quality of the calibration
dataset. Robust parameter estimation, using either ad hoc or
automatic calibration methods, depends on the quality and
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onsistency of the calibration dataset and its compatibility
ith the structure of the model. By comparing PEST and ad
oc calibrations we clearly demonstrated that calibration of
EMURO is best achieved with either explicitly defined time

eries data on each of the phytoplankton and zooplankton
tate variables; if one must use total (summed) state variables
hen it is critical to understand the quality of the aggregated
ime series and to formally describe the behaviors desired
rom the model.

There are many features of PEST that were not uti-
ized in this paper. As a consequence of the many model runs
erformed as part of the parameter estimation, PEST accumu-

ates information on parameter sensitivities (Jacobian matrix)
nd covariance (correlation) among parameters. For example,
EST calibration 3 that varied 57 parameters and use the ad
oc calibration as observed data showed that the two maxi-
um photosynthesis rates (Vmaxs, Vmaxl) and the maximum

razing rate of large zooplankton on large phytoplankton
Grmaxlpl) were most important in affecting model predic-
ions. The relative sensitivities, which measure the composite
hange in model predictions due to a fractional change in the
arameter (Doherty, 2004), exceeded 1.0 for these three param-
ters. Although performed in a different context, Kuroda and
ishi (2004) and Yoshie et al. (2007) also generally concluded

hat maximum photosynthesis and maximum grazing rates
ere important parameters. Because of the large number of
djustable parameters relative to the amount of calibration
ata, there were many correlations among parameters. The
EST-estimation parameter correlation matrix showed about
alf the pairs of parameters had correlation coefficients >0.8,
hich was consistent with a matrix condition number of

23,964 (>10,000 signifies a matrix approaching singularity
ue to parameter insensitivities or correlations, Doherty,
004). Other features of PEST not utilized in this paper include
ifferential weighting of state variables in the objective
unction, accommodation of prior information to constrain
arameter values, and prediction mode that allows for quan-
ification of uncertainty due to non-uniqueness of parameter
olutions. Many of these features are also common to other
earch-based parameter estimation methods (e.g., Matear,
995).

Kuroda and Kishi (2004) also applied an objective calibra-
ion method to a one-box version of NEMURO using mon-
toring data for Station A-7. They allowed eight parameters
etermined from a previous sensitivity analysis to be impor-
ant to be varied, and used the conjugate gradient method
o minimize the squared difference between predicted and
bserved values. Kuroda and Kishi (2004) concluded that while
he objectively estimated parameter values generate model
redictions closer to the observed data than a set of first-guess
arameter values, several discrepancies between predicted
nd observed values remained. We view our analysis here as a
ontinuation in the same spirit of the data assimilation anal-
sis of Kuroda and Kishi (2004).

We arrived at similar conclusions as Fennel et al.
2001) that sensitivity analysis and the quality of the

ssembled field data were critical to effective parameter
stimation. Fennel et al. (2001) applied a similar auto-
atic parameter estimation approach as PEST to a sim-

le nitrogen–phytoplankton–zooplankton model. They con-
2 0 2 ( 2 0 0 7 ) 38–51 49

cluded that sensitivity analysis was a critical accompani-
ment to parameter estimation for revealing inadequacies in
the formulation of the optimization problem, and that their
model was inconsistent with the available field data. Addi-
tional sensitivity analysis of NEMURO (e.g., Yoshie et al.,
2007), or at least a systematic approach to identify which
parameters to vary, would help constrain PEST in future
applications.

We recommend that automatic calibration methods, such
as PEST, be used for application of the NEMURO model to new
locations. Ideally, field data will allow for specification of time
series for each phytoplankton and zooplankton state variable,
and the available field data are sufficient to be kept separate
by their year of collection. In this situation, PEST will provide
an objective, defensible, and repeatable way to calibrate the
many parameters of the NEMURO model. Unfortunately, phy-
toplankton biomass is often reported as chlorophyll, rather
than broken down into functional groups or size-classes. If
the available data are insufficient for specification of each
state variable, then ad hoc calibration will likely be needed
to allow for inclusion of qualitative decisions about model fit
(or mis-fit). We recommend applying PEST in this situation
as well. Calibration using PEST provides a method for better
understanding the causes for data-model mis-matches, and
for providing an alternative calibration to ad hoc in order to
clearly understand the decisions underlying the ad hoc cali-
bration.

We are using PEST as part of our broader application of
NEMURO coupled with herring and saury bioenergetics model
to compare geographical differences in fish growth and its link
to climate (Megrey et al., this issue; Rose et al., this issue). We
use PEST to systematically calibrate NEMURO to each location,
and compare predicted herring and saury size-at-age to assess
the importance of environmental differences in explaining
patterns of fish growth among locations. We have learned that
the data synthesis and time series preparation is critical to
obtaining a robust calibration of NEMURO. Ultimately, we hope
to use the coupled models to examine the effects of regime
shifts and global climate change on herring growth.
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