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[1] Time series of observations generated by a stationary
red noise process are characterized by long intervals when
the observations remain above or below the overall mean
value. These intervals can be easily misinterpreted as
‘‘climatic regimes’’ with different statistics. A
‘‘prewhitening’’ procedure that removes the red noise
component from the time series prior to an application of
a regime shift detection technique is discussed. The key
elements of this procedure are subsampling and bias
correction of the least squares estimate of the serial
correlation. A new technique to obtain a bias-corrected
estimate of the autoregressive parameter is proposed. It is
shown that the Pacific Decadal Oscillation (PDO) appears to
be more than just a manifestation of a red noise process.
Citation: Rodionov, S. N. (2006), Use of prewhitening in

climate regime shift detection, Geophys. Res. Lett., 33, L12707,

doi:10.1029/2006GL025904.

1. Introduction

[2] Currently, a popular interpretation of long-term var-
iability in the climate and biological records is based on the
concept of ‘‘regimes’’ and ‘‘regime shifts.’’ Common def-
initions of these terms usually involve the notion of multiple
stable states in a physical or ecological system and a rapid
transition from one state to another. The regime concept
received a strong impetus after the shift in the North Pacific
climate in 1976–77 [Miller et al., 1994]. This shift clearly
exhibited itself in the phase change of the first principal
component of sea surface temperature in the North Pacific,
known as the Pacific Decadal Oscillation or PDO [Mantua
et al., 1997].
[3] Rudnick and Davis [2003] questioned the interpreta-

tion of the PDO series as a sequence of genuine ‘‘regimes’’
with different statistics. Using Monte Carlo simulations,
they showed that an equally plausible model for the PDO
would be a Gaussian red noise process with stationary
statistics. Exploring the idea that true regime shifts require
the underlying dynamics to be nonlinear, Hsieh et al. [2005]
arrived at the conclusion that large-scale marine ecosystem,
due to their nonlinearity, have the capacity for dramatic
change in response to stochastic fluctuations in basin-scale
physical factors. They argue, however, that key physical
variables for the North Pacific, such as the PDO, are not
deterministically nonlinear, and are best described as linear
stochastic.
[4] The purpose of this paper is to suggest a procedure of

red noise removal from a time series with potentially ‘‘true’’

regime shifts. After this ‘‘prewhitening,’’ the time series can
be processed with any regime shift detection method. This
approach is applied to the PDO series to see whether or not
it represents something more than just a realization of a red
noise process.

2. Structural Time Series Model

[5] A structural time series model is one which is set up
in terms of components that have a direct interpretation
[Harvey and Shephard, 1993]. For example, a time series
{Xt, t = 1, 2, . . ., n} can be seen as the sum of trend ft and
irregular component et:

Xt ¼ ft þ et; ð1Þ

where et are normally distributed independent random
variables with zero mean and variance s2. In the case of two
regimes with different mean values, m1 and m2, and known
change point c

ft ¼
m1; t ¼ 1; 2; . . . ; c� 1;
m2; t ¼ c; cþ 1; . . . ; n:

�

[6] A realization of process (1) for m1 = �1, m2 = 1, s2 =
1, c = 21, and n = 40 is presented in Figure 1a. Having a
time series of observations, the direct approach to regime
shift detection is to formulate the null hypothesis H0

regarding the lack of a regime shift at t = c (H0: m1 =
m2 = m), obtain the estimates m̂1, m̂2 and ŝ2, and then using,
for example, the Student’s t-test, try to reject the null
hypothesis at the required probability level p. For the
sample in Figure 1a, the estimates are: m̂1 = �1.08, m̂2 =
1.09, ŝ2 = 0.95 and the null hypothesis can be rejected at
p = 3�10�8 (two-tail t-test).
[7] In climate research, the number of observations n

typically ranges from a few dozens to a hundred or so points
(years). Working with these relatively short time series, it is
hard to draw any definitive conclusion about the underlying
process based just on the data alone. For example, the time
series in Figure 1a might be easily mistaken for a realization
of a stationary red noise process. This process is usually
modeled by the first order autoregressive (AR1) model

Xt � mð Þ ¼ r Xt�1 � mð Þ þ et: ð2Þ

By letting m0 = (1 � r) m, it can be rewritten in a more
familiar form

Xt ¼ rXt�1 þ m0 þ et : ð3Þ

[8] For the process to be stationary and causal, it is
necessary for the autoregressive parameter r to satisfy the
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condition jrj < 1. When r is positive, the process is red
noise, because its energy monotonically decreases as the
frequency increases. If r = 0, it is white noise when the
same energy is found at all frequencies. For negative values
of r, it becomes violet noise, with energy monotonically
increasing as the frequency increases. If r = 1, the process is
called ‘‘random walk’’, for which the increments (Xt �
Xt�1) are purely random.
[9] Due to inertia in red noise processes determined by

the value of r, they are characterized by extended intervals
or ‘‘runs,’’ when the time series remains above or below its
mean value. These runs can be misinterpreted as different
‘‘regimes.’’ Figure 1b shows a realization of AR1 process
with r = 0.8. The regime shift at t = 29 could be statistically
significant at the 3 � 10�9 level based on the t-test, if the data
points were independent. Therefore, it is necessary to either
recalculate the significance level by taking into account the
serial correlation or use a prewhitening procedure, which
consists of removing red noise by using the difference (Xt �
r̂Xt�1). The first approach was discussed by von Storch and
Zwiers [1999], who suggested using the so-called ‘‘equiv-
alent sample size’’ for the t-test. Prewhitening has been used
to eliminate the influence of serial correlation on the Mann-
Kendall-test of trends [von Storch, 1995]. Both approaches
require the estimate r̂ of the AR1 coefficient, which can be
obtained using the entire series of observations.
[10] The situation becomes more complicated, if the time

series contains both regime shifts and red noise, that is, the
underlying model is

Xt ¼ rXt�1 þ f 0t þ et ; ð4Þ

where f 0t = ft � rft�1. In this case, using all the available data
to estimate r would be misleading. For example, the
ordinary least squares (OLS) estimate of r for the time series
in Figure 1a is r̂ = 0.36, if all 40 data points are used.
[11] A possible solution to this problem is to use sub-

sampling. The size of subsamples should be chosen so that
the majority of them do not contain change points. Assuming
that regime shifts occur at a regular interval of l years, this
condition is satisfied if the subsample size m is less than or
equal to (l + 1)/3. In this case, the estimate of r can be chosen
as the median value among the estimates for all subsamples.
In practice, however, finding the right value of m requires
some experimentation as discussed below. After red noise is

removed, the filtered time series Z 0
t = f 0t + et can be processed

with one of the regime shift detection methods.
[12] It is important to note that the magnitude of shifts in

Z0t is reduced by a factor of (1 � r̂), which makes the shift
detection more difficult. It is partly offset by a reduction of
the variance in Z0t by a factor of (1 � r̂2). Also, what helps
determining the timing of regime shifts is that the value of
Z0c tends to be amplified in the filtered time series. Indeed,
within the regimes (when ft = ft�1), f

0
t is constant and equal

to the reduced mean value m01 for the first regime and m02 for
the second. At the change point, which is the first point of
the second regime, f 0c = m2 � rm1. Substituting m2 ± Dm,
where Dm is the difference between the mean values of the
regimes, for m1, the latter can be rewritten as f 0c = m2 � rm2 ±
rDm = m02 ± rDm. It shows that Z0c will be higher (lower)
than other values for the second regime with the same white
noise impulse et by rDm, when the regime shift is up (down).
This amplification of change points facilitates the regime
shift detection when the sequential method is used
[Rodionov, 2004].

3. Parameter Estimation

[13] The major problem in the outlined method is an
accurate estimation of r for short subsamples of size m. It is
well-known that the conventional estimators, such as the
OLS or maximum likelihood techniques, yield biased esti-
mates for r [Shaman and Stine, 1988]. There are two
sources of the bias. First, if the true mean of the series m
is known, the serial correlations, will, in general, be biased,
except when r = 0 [Johnston, 1984]. In practice, the mean
has to be estimated from the sample, and this introduces a
much larger bias, which is present even if r = 0 [Marriott
and Pope, 1954].
[14] Much research has been devoted to estimating the

bias, although most efforts have considered the first order
term of the bias, O(m�1), and the case when the mean is
known. Among those who considered a more complex
situation with the unknown mean were Marriott and Pope
[1954] and Kendall [1954], who gave the formula for the
expected value of the OLS estimator of r:

E r̂ð Þ ¼ r� 1þ 3r
m� 1

þ O
1

m2

� �
: ð5Þ

In a practical situation, r is unknown. The expected value of
r̂ is also unknown, but following Orcutt and Winokur
[1969], the procedure is to substitute r̂, which is known, for
E(r̂) and then solve equation (5) for r. Solving for r and
denoting this revised estimate of r by r̂c yields

r̂c ¼ m� 1ð Þr̂þ 1

m� 4ð Þ ð6Þ

[15] Another method tested here is based on the assump-
tion that the first approximation of the bias is approximately
inversely proportional to m and is always negative [Orcutt
and Winokur, 1969]. Therefore, the first order bias-corrected
estimate r̂c,1 is

r̂c;1 ¼ r̂þ 1=m:

The residual bias is also inversely proportional to m and its
magnitude is a linear function of r. Since r and r̂ are linearly

Figure 1. Realizations of (a) white noise process (s2 = 1)
with a shift in the mean at t = 21 from m1 = �1 to m2 = 1, and
(b) red noise process with r = 0.7. The shift at t = 29 in the
latter case would be statistically significant at the 3 � 10�9

level, if the data points were independent.
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related (which can be seen in Monte Carlo simulations), the
latter can be substituted for the former. The method then
uses three additional corrections of a smaller magnitude:

r̂c;k ¼ r̂c;k�1 þ jr̂c;k�1j=m; k ¼ 2; 3; 4:

[16] The two methods, referred here MPK (Marriott-Pope
and Kendall) and IP4 (Inverse Proportionality with 4
corrections), were compared in Monte Carlo experiments,
when one thousand normally distributed, N (m0 = 0, s2 = 1),
time series of size n = 40 were generated for each given
value of r. The OLS estimates were calculated for the
subsample size m = 5, 6, . . ., 30, and then corrected by
the MPK and IP4 methods. The results for m = 5, 10 and 20
are presented in Table 1. As seen, the OLS estimates are
biased substantially even at m = 20 and the bias becomes
larger as the serial correlation increases. The results of the
MPK and IP4 methods are similar to each other for m 	 10.
For smaller m, however, IP4 substantially outperforms MPK
in terms of both the magnitude of the bias and variability of
the estimates.

4. The Effect of Prewhitening

[17] The Monte Carlo technique was used to evaluate the
effect of prewhitening on the rejection rate of the null
hypothesis H0 = no regime shift. Using a Gaussian random
number generator, N(0, 1), 1000 time series of size 100 were
generated for each tested value of r. These time series were
processed using the sequential method [Rodionov, 2004]
with the following parameters: target significance level p =
0.1, cutoff length l = 15 and Huber weight parameter h = 1.
More details about the method and parameters it takes can
be found at www.beringclimate.noaa.gov. The website also
contains a downloadable computer program with the code
written in VBA for Excel. The Huber weight parameter was
added to the method after the publication of the above paper
in order to diminish the effect of outliers (values greater
than h standard deviations) by weighing them inversely
proportional to their distance from the mean value of the
regime. The serial correlation was estimated for subsamples
of size m = 9.
[18] As Figure 2 illustrates, without prewhitening the

rejection rate increases dramatically with the increase of
serial correlation. At r = 0.8, it is close to 0.5, which means
that the null hypothesis is rejected in almost 50% of the time
instead of expected 10%. For the IP4 method, the rejection
rate is close to the target significance level for the values of

r up to 0.6. For r > 0.6, the rejection rate increases due to
some underestimation of these higher values of r (see
Table 1). In contrast, the MPK method overestimates r,
and instead of prewhitening, recolors the time series into
violet noise. Although the probability of detecting a spuri-
ous regime shift (Type I error) in this cases decreases, the
probability of missing a true, not AR1-related, regime shift
(Type II error) increases.
[19] The same set of time series was used to compare

prewhitening with the adjustment based on the ‘‘equivalent
sample size’’ [von Storch and Zwiers, 1999]. The latter was
used instead of the actual sample size to calculate the
degrees of freedom for the regime shift index, which is
used in the sequential method to determine the timing of
shifts. It turned out that, while the ‘‘equivalent sample size’’
approach reduces the rejection rate compared with no
adjustment at all, the reduction is quite small (regardless
of how r is estimated), not better than that in the OLS case
in Figure 2.
[20] Since prewhitening reduces the magnitude of regime

shifts, the Monte Carlo technique was also used to evaluate
the effect of this procedure on power of the regime shift
detection method. The time series were generated as de-
scribed above, but this time a shift of variable magnitude
was introduced at t = 51. As expected, power of the method
decreases with the increase in serial correlation. For a shift
of two standard deviations in magnitude, for example, it
decreases from 91% of hits (correct regime shift detections)
at r = 0 to 63% at r = 0.6 when the equivalent sample size
adjustment is used. In the case of prewhitening, the decrease
in the method’s power is even steeper, from 90% at r = 0 to
only 25% at r = 0.6. Hence, prewhitening is a more
conservative way of regime shift detection in the sense that
chances of missing a true regime shift are relatively high,
but once detected, the significance level of that regime shift
can be accurately estimated, particularly if the IP4 estimates
are used for low to moderate values of r.

5. Is the PDO Simply Red Noise?

[21] The prewhitening technique, discussed above, was
applied to the annual PDO values for the period 1900–
2005. The MPK and IP4 estimates are practically the same
for subsample size m > 11 (Figure 3). The estimates remain
relatively stable at r̂ 
 0.45, as m increases to 27. For
greater m, r̂ jumps to a higher level of about 0.60. This

Table 1. Sample Means and Standard Deviations of Three

Estimates of r for Different Subsample Size ma

m r OLS MPK IP4

5 0.0 �0.28 (0.14) �0.12 (0.59) �0.02 (0.12)
5 0.4 �0.07 (0.15) 0.69 (0.60) 0.24 (0.22)
5 0.8 0.15 (0.18) 1.55 (0.71) 0.60 (0.30)
5 1.0 0.27 (0.19) 2.08 (0.81) 0.80 (0.34)
10 0.0 �0.11 (0.17) 0.00 (0.25) 0.02 (0.17)
10 0.4 0.18 (0.17) 0.44 (0.26) 0.39 (0.21)
10 0.8 0.48 (0.15) 0.86 (0.23) 0.76 (0.20)
10 1.0 0.59 (0.14) 1.06 (0.22) 0.92 (0.20)
20 0.0 �0.04 (0.18) 0.00 (0.21) 0.01 (0.18)
20 0.4 0.30 (0.18) 0.41 (0.22) 0.40 (0.21)
20 0.8 0.63 (0.15) 0.81 (0.18) 0.79 (0.18)
20 1.0 0.78 (0.13) 0.98 (0.16) 0.96 (0.15)

aStandard deviation is in parentheses.

Figure 2. The rejection rate of the null hypothesis without
prewhitening and for three methods of r estimation: OLS,
IP4 and MPK. The horizontal gray line is the target
significance level of 0.1.
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behavior of r̂ is typical for the time series that represent a
mixture of red noise with shifts in the mean. It shows that a
characteristic time scale of the PDO regimes is about 25–
30 years.
[22] Figure 4a shows the PDO series and a stepwise trend

with regime shifts in 1948, 1976 and 1999. These shifts
were detected by applying the sequential method with the
following parameters: p = 0.05, l = 20 and h = 1. The
significance levels for the first two regime shifts are
2.1�10�5 and 1.1�10�5, respectively. These levels were
calculated using the 2-tailed t-test and then adjusted for
serial correlation using the equivalent sample size technique
[von Storch and Zwiers, 1999]. The autoregressive param-
eter r̂ = 0.46 was estimated using the IP4 method with the
subsample size m = 12. As for the potential regime shift in
1999, the test is still in progress, since the number of years
after that shift is less than the cutoff interval of 20 years
used here. As of 2005, the significance level for this shift is
0.14.
[23] Figure 4b shows the same PDO series after prewhit-

ening, when the red noise component was removed by
taking the difference (Xt � 0.46Xt�1). The sequential
method was applied to this filtered time series with the
same values of p, l and h as above. Although the magnitude
of the shifts in this case is reduced in comparison to those in
Figure 4a, they still remain statistically significant at the
levels of 4.6�10�4 for 1948 and 2.1�10�4 for 1976. No shift
was detected in 1999. To make the shifts of 1948 and 1976
to be statistically insignificant at the 0.05 level, the AR1
coefficient should be 0.8 or greater. Based on Monte Carlo
simulations, the 95% confidence interval for r = 0.46 is
0.22–0.66. Hence, it is unlikely that these regime shifts are
just manifestations of a red noise process. The red noise
component (Figure 4c), which is represented here by the
difference in the PDO series before and after the prewhiten-
ing, accounts for about 25% of the total variance in PDO.

6. Concluding Remarks

[24] The prewhitening procedure proposed here is
designed to remove the red noise component from time
series prior to applying a regime shift detection method. It
does not intend to reveal the nature of climate regimes; it is
simply a way to see whether or not these regimes can be
more than just a red noise process. Two key elements of the
procedure are: 1) subsampling and 2) bias correction of the
OLS estimates of r. The size of subsamples should be as

small as possible to minimize the effect of regime shifts on
r̂. On the other hand, it should be as large as possible to
minimize the sampling variability of r̂. These opposite
requirements to the size of subsamples make it difficult to
apply this procedure to short time series with decadal or
shorter regimes. It works well, however, for relatively long
time series with the regimes on the multidecadal time scale,
such as the PDO.
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Figure 3. OLS estimates of the annual PDO index with no
bias correction and using the MPK and IP4 methods.

Figure 4. (a) Annual PDO index, 1900–2005, with a
stepwise trend, (b) the same time series after prewhitening,
and (c) difference between the time series in Figure 1a and
1b.

L12707 RODIONOV: PREWHITENING IN SHIFT DETECTION L12707

4 of 4


