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Comparative analysis of statistical tools to identify
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Many of the factors affecting recruitment in marine populations are still poorly understood,
complicating the prediction of strong year classes. Despite numerous attempts, the com-
plexity of the problem often seems beyond the capabilities of traditional statistical analysis
paradigms. This study examines the utility of four statistical procedures to identify relation-
ships between recruitment and the environment. Because we can never really know the pa-
rameters or underlying relationships of actual data, we chose to use simulated data with
known properties and different levels of measurement error to test and compare the meth-
ods, especially their ability to forecast future recruitment states. Methods examined include
traditional linear regression, non-linear regression, Generalized Additive Models (GAM),
and Artificial Neural Networks (ANN). Each is compared according to its ability to recover
known patterns and parameters from simulated data, as well as to accurately forecast future
recruitment states. We also apply the methods to published Norwegian spring-spawning
herring (Clupea harengus L.) spawnererecruiteenvironment data. Results were not consis-
tently conclusive, but in general, flexible non-parametric methods such as GAMs and ANNs
performed better than parametric approaches in both parameter estimation and forecasting.
Even under controlled data simulation procedures, we saw evidence of spurious correla-
tions. Models fit to the Norwegian spring-spawning herring data show the importance of
sea temperature and spawning biomass. The North Atlantic Oscillation (NAO) did not ap-
pear to be an influential factor affecting herring recruitment.
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Introduction

Marine ecosystems are notoriously difficult to study. Trophic

relationships are multidimensional, relevant biophysical fac-

tors vary widely in their spatial and temporal scales of influ-

ence, and process linkages are complex and highly non-linear

(Wooster and Bailey, 1989; Mullin, 1993). Walters and Lud-

wig (1981) showed that the problem is further compounded

by inaccuracies in measuring environmental variability,

as well as the biotic response. Consequently, applied ecolog-

ical investigations attempting to relate oceanic physics,
1054-3139/$30.00 � 2005 International Cou
atmospheric physics, and marine biology to variations in

fish stock-recruitment are difficult to carry out. Nonetheless,

the collective impacts of regime shifts, large multi-decadal-

scale forcings of marine ecosystems (such as those attributed

to the NAO), and natural and man-made influences on vari-

ability in fish populations and future states of ecosystems

are widely recognized as important areas of study.

One of the major outstanding questions of fisheries sci-

ence concerns the existence of a relationship between the

size of the breeding population (spawners), their offspring

(recruits), and the influence of the surrounding environment
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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(Hilborn and Walters, 1992). Many of the theories on fish-

eries yield optimization and management policy of fish

populations in marine ecosystems are based on analysis

of spawnererecruit relationships. However, for most fish

species, recruitment, being itself highly variable, often

appears to fluctuate independently of stock size. The most

common explanation for the apparent failure of spawnere
recruit theory is that the relationship is obscured by ex-

tremely high mortality rates during the pre-recruit period

(Goodyear and Christensen, 1984; Cushing, 1988; Walters

and Collie, 1988). Presumably, population dynamics during

early life stages are strongly influenced by the environmen-

tal conditions experienced by planktonic fish larvae and

eggs. This counterintuitive result has led others to advocate

the development of management strategies that do not as-

sume an underlying spawnererecruit relationship (Evans

and Rice, 1988; Koslow, 1992; Mackinson et al., 1999;

Chen and Irvine, 2001; Voges et al., 2002).

The estimation and forecasting of recruitment has been

a persistent preoccupation of fisheries scientists for close

to a century because of the critical importance of recruit-

ment to the exploitable segment of the stock (Needle,

2002). Linkages between recruitment and external variables

are often explored with various parametric statistical tech-

niques in the hope that the important process controlling re-

cruitment variability will be identified, and that useable

recruitment forecasting tools can be developed. Despite nu-

merous attempts, the complexity of the problem often

seems beyond the capabilities of traditional statistical anal-

ysis paradigms. There may be limitations in theoretical de-

velopment, inadequate length of time-series, the need to

partition already short time-series into segments represent-

ing unique production regimes, lack of degrees of freedom,

or the inability to meet required assumptions. Typical para-

metric procedures like linear regression and correlation

analysis require restrictive assumptions such as normally

distributed errors, dependent and independent variables

measured without error, linear relationships, and non-auto-

correlated data. As biologists, we know these assumptions

are not valid in marine systems. These methods also suffer

from common restrictions such as: standard multiple linear

models do not allow interactions between variables unless

they are pre-specified and of a particular multiplicative

form; functional relationships must be specified a priori

before analysis proceeds; and analytical methods do not

deal well with gaps (missing values) in the data time-series.

In most circumstances, these conditions cripple the ability

of analysts to make sense of the data.

Modelling paradigms and analytical tools that effectively

identify environment-dependent recruitment relationships

and provide the capability for recruitment prediction are

not well established, despite the need to understand recruit-

ment dynamics and the compelling economic, biological,

and political arguments for prudent management. Many of

the factors affecting recruitment in marine populations are

still poorly understood, complicating the prediction of strong
year classes. Still, recruitment prediction remains a vital

information component required by resource management

decision-makers dealing with exploited marine ecosystems.

The objectives of this study are to investigate the utility

of four separate statistical procedures to identify relation-

ships between recruitment and the environment. Because

we can never really know the parameters or underlying re-

lationships of actual data, we chose to use simulated data

with known properties and different levels of measurement

error to test and compare the methods, especially their abil-

ity to forecast future recruitment states. We also apply the

methods to published spawnererecruiteenvironment data

for a selected North Atlantic fish stock, namely Norwegian

spring-spawning herring (Clupea harengus L.). Methods

examined include traditional linear (LR) and non-linear re-

gressions (NLR), Generalized Additive Models (GAM),

and Artificial Neural Networks (ANN). Each is compared

according to its ability to recover known patterns and pa-

rameters from the simulated data, describe the observed

data from a North Atlantic fish stock as well as to accurately

forecast future recruitment states.

Material and methods

Data sets

Simulated data

We wanted to simulate a recruitment time-series with

known properties, and then to use these data to test the per-

formance of statistical procedures typically used to examine

recruitmenteenvironment relationships. The simulated data

(Rs) should have statistical properties similar to the ob-

served recruitment time-series (Ro), and we used the Gulf

of Alaska walleye pollock recruitment time-series, estimated

from the annual stock assessment model applied to this

stock (Dorn et al., 2003) to help guide us in this aspect

of the study. Age-2 recruitment (in billions) was estimated

for the 1961e2002 year classes for a total of 42 data points.

By design, simulated recruitment (Rs) was a response to

three explanatory factors, each related to recruitment by

a predefined functional relationship. Simulated recruitment

was related to the first factor in a non-linear way and to the

second in a linear way. There was no relationship between

recruitment and the third factor.

Factor 1, SB. This factor, (X1), is similar to a relationship

between recruitment and spawning biomass. We used the

actual spawner biomass (million tonnes) from the Gulf of

Alaska walleye pollock stock assessment model (Dorn

et al., 2003) to generate random data with similar statistical

properties. These data were skewed to the right, and we at-

tempted to fit non-symmetrical distributions to the data.

The gamma distribution best described the data using resid-

ual sum of squares criteria.

The gamma distribution, which is a family of curves

based on two parameters, is given by
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X1Zfðxja;bÞZ 1

baCðaÞx
a�1ex=b ð1Þ

where a and b are parameters O0, x is the spawning bio-

mass data, and C(�) is the Gamma function. When a is large,

the gamma distribution closely approximates a normal dis-

tribution with the advantage that the gamma distribution

has density only for positive real numbers. The gamma dis-

tribution was fit to the spawning biomass data, and the pa-

rameters, aZ 3.0224 and bZ 0.115, were estimated with

maximum likelihood.

The functional relationship relating Factor 1 to recruit-

ment (Rs) was defined as being similar to a non-linear

Ricker-type spawnererecruit relationship (Ricker, 1975),

using the random variable X1 as the explanatory variable.

To parameterize this relationship, we fit a Ricker spawner-

erecruit curve to the Gulf of Alaska spawner and recruit

time-series using non-linear regression. Parameter estimates

were aZ 4.171 and bZ 1.212, with an R2Z 10.4%.

Factor 2, SST. This factor, (X2), is related to recruitment

by a linear functional relationship between recruitment and

X2, similar to a relationship between recruitment and sea

surface temperature (SST) anomalies (see Equation (2)).

We used actual March SST anomaly data from the Gulf

of Alaska. A normal distribution was fit to the March

SST anomaly data, and the parameters mZ 0.0943 and

s2Z 9.29 were estimated with maximum likelihood.

Factor 3, wind anomaly. This factor, (X3), was intended

to have no relationship to recruitment. This feature (i.e. no

relation to recruitment) is often an important characteristic

of actual data, and we include it here to examine the ability

of the statistical procedures to identify this variable as un-

important. We call this variable wind anomaly. X3 was

a random variable defined as

X3wlognormal
�
m;s2

�

where mZ 0.0, and s2Z 1.8943. For any value of the ran-

dom variable X3, the explanatory variable used to simulate

recruitment in Equation (2) was set to a constant equalling

the log of the mean of observed recruitment Ro, ln
�
mRo

�
.

Random noise. Random noise was generated by defining

a random variable as

3wN
�
m;s2

�

where mZ 0.0, and s2Z 0.74. The value of s2 was ap-

proximated from the spawnererecruit fit by taking the
residual sum of squares and dividing by 40 degrees of

freedom.

Generation of Rs. Simulated recruitment was generated

by the equation

RsZaX1 e
½�bX1C4X2ClnðmRoÞC3� ð2Þ

where X1, X2, and X3, all random variables, are the data we

typically measure and try to relate to the recruitment vari-

ation; aZ 4.171 and bZ 1.212 are the spawnererecruit

parameters; and 4 is an arbitrary linear coefficient where

4Z 0.25. This approach is similar to that proposed by Hil-

born and Walters (1992, p. 285). Thus, Rs is a combination

of a non-linear response to a gamma random variable X1

similar to spawning biomass, a linear relationship to a nor-

mal random variable X2, a constant mean level of recruit-

ment
�
ln
�
mRo

�
Z2:0423

�
unrelated to the lognormal

random variable X3, and a multiplicative, lognormally

distributed measurement error term. All recruitment effects

occur in the birth year (i.e. there are no lag effects).

The random noise component in Equation (2) was gener-

ated under three different error levels: no error, (1/2)s2, and

s2. These error assignments are somewhat arbitrary, but we

were generally guided on the range of magnitude in the

error after examining the coefficient of variation of 42 dif-

ferent fish stock-recruitment time-series.

Norwegian spring-spawning herring

Data for Norwegian spring-spawning herring, potentially

the largest of the herring stocks in the Northeast Atlantic,

were taken from information presented in Toresen and

Østvedt (2000). Biological data consisted of spawning-

stock biomass SB (in million tonnes) and recruitment mea-

sured as three-year olds (R3 in billions) and age-0 (R0 in

billions). The SB, R0, and R3 time-series were available

for the periods 1907e1998, 1907e1997, and 1904e1995,

respectively. We used the R3 time-series for recruitment

for the period 1907e1998 (lagged 3 years to match SB),

since the R0 and R3 time-series were highly correlated

(rZ 0.992, p! 0.001).

NorthAtlanticOscillation (NAO) data represent thewinter

(DecembereMarch) index, which is based on the difference

of normalized sea level pressure (SLP) between Lisbon, Por-

tugal, and Stykkisholmur/Reykjavik, Iceland, from 1864

through 2000. The average winter SLP data at each station

were normalized by division of each seasonal pressure by

the long-term (1864e1983) mean standard deviation (data

supplied by James Hurrell are available at http://www.cgd.

ucar.edu/~jhurrell/nao.stat.winter.html#winter). The index

was smoothed with a three-year moving average to reduce

the influence of fluctuations with periods less than four years.

The NAO time-series was available from 1864 to 2003.

Water temperature, available from the Russian Kola me-

ridian transect (known as the Kola Line), represents the

http://www.cgd.ucar.edu/~jhurrell/nao.stat.winter.html#winter
http://www.cgd.ucar.edu/~jhurrell/nao.stat.winter.html#winter
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average sea temperature ((C) between 0 and 200 m in an

area which stretches from 70(30#N to 72(30#N along the

33(30#E meridian (Bochkov, 1982; Tereshchenko, 1996).

The Kola Line time-series was available from 1904 to

1998 (R. Toresen, pers. comm.). These data will be called

Kola sea temperature (KST) in subsequent discussion.

No time-lags were explored when fitting the different sta-

tistical models to the Norwegian spring-spawning herring

and environmental data.

Statistical methods

Four statistical methods were applied to the simulated and

actual recruitment time-series. Three were applied to

recruitment on the absolute scale. These were non-linear

regression (Hilborn and Walters, 1992), Generalized Addi-

tive Models (GAM) (Hastie, 1991), and Artificial Neural

Networks based on the Generalized Regression Neural Net-

work method of Specht (1991). Linear regression and

GAMs were applied to herring recruitment time-series on

the log scale.

Non-linear regression is a standardway of fitting spawnere
recruiteenvironment models where the user has to specify

a priori the functional relationships between the independent

and dependent variables. Parameters are estimated by mini-

mizing the squared difference between the observed and the

predicted recruitment.

GAMs model the data non-parametrically by using scat-

terplot data smoothers that allow the GAM to suggest the

functional relationship between independent and dependent

variables. Smoothers are tools for summarizing the trend of

a response measure as a function of one or more predictor

measurements. An important property of a smoother is its

non-parametric nature: it does not assume a rigid form

for the dependence of the response variable on the predictor

variable. Whereas linear models assume that the response is

linear in each predictor, additive models assume only that

each predictor affects the response in a smooth way. The re-

sponse is modelled as a sum of smooth functions in the pre-

dictors, where the smooth functions are estimated

automatically using scatterplot smoothers.

The Generalized Additive Model (GAM) can be written

as

E
�
Rs

��X1;.;Xp

�
ZaC

Xp
jZ1

f j
�
Xj

�
C3 ð3Þ

which is the expectation that the response variable (Rs) is

related to the covariates (X1,.,Xp) by the additive predic-

tor, aC
P

fj(Xj). The amount of smoothing is determined

by the number of degrees of freedom applied to the smooth-

ing spline function applied to each covariate. We used cu-

bic spline scatterplot smoothers in our application. More

information on non-parametric GAM regression models

can be found in Hastie and Tibshirani (1990) and Chambers

and Hastie (1992). The use of GAMs in fisheries
applications is growing (Cury et al., 1995; Swartzman

et al., 1995; Borchers et al., 1997; Augustine et al., 1998;

Beare and Reid, 2002; Ciannelli et al., 2004), and useful

applications to spawnererecruiteenvironment models

have been demonstrated (Myers et al., 1995; Jacobson

and MacCall, 1995; Daskalov, 1999).

Neural networks are computer applications devised in the

1940s that attempt to mimic the neurophysiology of the hu-

man brain. They are capable of ‘‘learning’’ patterns found

in the data. Often they are referred to as ‘‘black box’’ mod-

els because their parameters are generally uninterpretable,

so the emphasis is on prediction rather than on model build-

ing or process understanding. For some reason, neural net-

works are not very common in fisheries applications,

although there has been a recent increase in their use

(Komatsu et al., 1994; Brey et al., 1996; Akoi and

Komatsu, 1997; Huse and Gjøsæter, 1999; Laë et al.,

1999). Their utility specifically addressing the recruitmente
environment problem has also recently been demonstrated

(Chen and Ware, 1999; Huse and Ottersen, 2003).

Multi-layer feed-forward neural network models are

multivariate statistical models that can be viewed as non-

linear regression models. Sometimes these are called

multi-layer perceptron (MLP) models (Sarle, 1994).

MLPs are general purpose, flexible non-linear models that

can approximate virtually any function to any degree of ac-

curacy. White (1992) refers to them as universal approxi-

mators. MLPs are especially useful in situations where

there is little knowledge about the mathematical form of

the relationship between independent and dependent

variables.

A feed-forward neural network model used in this

study is based on the General Regression Artificial Neural

Networks developed by Specht (1991). A schematic of

a generalized Artificial Neural Network model is given in

Figure 1.

INPUT

INPUT

INPUT

INPUT

xj yl

w1jk w2kl

OUTPUT

OUTPUT

Figure 1. A schematic of a generalized neural network model

showing input neurons (xj) in grey, hidden layer neurons in white,

output neurons (yl) in cross-hatched pattern, and the input weight

(W1jk) and the output weight connections (W2kl).
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The equations describing the neural network model can

be given by

ylZ~g

 XK
kZ1

w2kl g

 XJ
jZ1

w1jk xjCq1j

!
Cq2k

!
ð4Þ

~gðxÞZgðxÞZð1Ce�xÞ�1

where the hidden neurons are a weighted sum of the input

weights (w1jk) and the input neurons (xj), the output neu-

rons (yl) are a weighted sum of the hidden neurons, and

the output weights (w2kl) and q1j and q2k are constant terms

often referred to as the bias terms. The response, yl, is

a transformed linear combination of transformed linear

combinations of the predictors using the logistic transfor-

mation g(x). It is this flexible form, with many parameters,

that gives the network its universal approximation property,

i.e. the ability to fit a wide variety of functions.

The input and output weights are adjusted by an iterative

scheme to minimize the residual sum of squares (RSS) us-

ing the objective function

RSSZ
X
l

X
i

�
yli � ŷli

�2 ð5Þ

where yli are the observed data, and ŷli are the data pre-

dicted from the neural network. Relative weights for each

of the input variables can be used to judge the relative im-

portance of the input variables similar to the use of estimated

coefficients in a linear regression. Often neural networks

have more than one output neuron, indexed by l. We

have only one output neuron (recruitment, Rs) in our anal-

ysis so, in our application, Equation (5) is evaluated over

only one summation (year, i).

For each neural net, two types of training were used:

a non-linear least squares optimization procedure and a ge-

netic algorithm (Goldberg, 1989; Davis, 1991; Michale-

wicz, 1992). The genetic algorithm is a derivative-free,

‘‘brute force’’, stochastic optimization method recently be-

ing used in fisheries applications (Chen et al., 2000) that

systematically searches the entire parameter space by mim-

icking the evolution of populations. In the genetic algo-

rithm, several possible solutions to a problem are

generated. For each solution, the vector of parameters is en-

coded into ‘‘genes’’ and ‘‘chromosomes’’. Each is tested for

its performance (fitness), then a fraction of the ‘‘good’’ sol-

utions is selected, while others are eliminated (survival of

the fittest). New (more fit) generations of possible solutions

are created using the process of reproduction, crossover,

and mutation. New generations are produced and evaluated

until convergence is achieved. Genetic algorithms are very

robust, but the penalty for generalization is computational

intensity. This is not much of an issue for relatively small

problems implemented on fast computers.

Ward Systems Group�� Neuroshell Easy Predictor�
(Release 2.0) was used to implement the Generalized Arti-

ficial Neural Network; S Plus�� for Windows (version 6.1
Professional, Release 1) was used to implement the linear

and non-linear regressions and GAM statistical procedures;

and MATLAB�� (version 6.5.0.180913a, Release 13) was

used to fit the statistical distribution to data and generate the

simulated data.

Testing and evaluation procedures

Each time-series was split into a testing segment and a fore-

casting segment. The last five observations in the simulated

time-series were ‘‘held back’’ to evaluate each statistical

procedure’s ability to forecast recruitment. In the observed

herring time-series, the last ten observations were held back

for the forecasting segment, so that we had a complete set

of contrasting recruitment levels (low, average, and high).

The decision to keep the last five or ten observations was

arbitrary, but based on the procedure described in Saila

(1996). Alternatively, we could have selected a random

set of five (or ten) observations.

The testing segment was used to fit each model (i.e. es-

timate the parameters for each method). Then the fit model

was applied to the forecasting segment of the time-series,

and the observed and forecast recruitment values were com-

pared. Relationships were tested using untransformed and

transformed (natural logarithm) recruitment time-series.

LR and NLR models used the GausseNewton minimiza-

tion routine to solve for the model parameters. GAM mod-

els used the cubic spline smoother of varying degrees of

freedom. ANNs used the non-linear minimization method

via the back propagation technique called Turboprop��,

which is a proprietary algorithm of Ward Systems

Group��, and genetic algorithms to solve the network.

Model fit and parsimony were evaluated through analysis

of deviance using approximate F-tests and the Akaike infor-

mation criteria (AIC: Chambers and Hastie, 1992). Suitable

GAM models were identified by a stepwise selection proce-

dure in which each independent variable was started with

one degree of freedom with a maximum of four degrees

of freedom allowed by the selection procedure. Selection

of the best model was based on the AIC criteria.

Results

Simulated data did possess statistical characteristics of ac-

tual recruitment time-series (Table 1), showing close

Table 1. Descriptive statistics comparing simulated data and actual

recruitment time-series data.

Mean Median Minimum Maximum Autocorrelation*

Simulated

data

1.05 0.92 0.05 3.07 0.632

Actual

data

0.86 0.43 0.08 3.51 0.539

*Autocorrelation calculated at a lag of one year.
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correspondence in terms of the values of mean, median,

minimum, maximum, and autocorrelation at a lag of one.

The Norwegian spring-spawning herring spawner biomass

and age-3 recruitment time-series, along with the Kola

sea temperature (KST) and NAO time-series, are presented

in Figure 2. After a period of high abundance, the spawning

biomass collapsed towards the end of the 1960s (Dragesund

et al., 1980; Jakobsson, 1980). During the 1970s and early

1980s, the stock was gradually rebuilt, and the first strong

year class after the collapse came in 1983. By the early

1990s, the stock had regained much of its previous distribu-

tion area, was found feeding in the Norwegian Sea, and has

since been rebuilding (Dommasnes et al., 2004). Recruit-

ment time-series from both the simulated data and the her-

ring data demonstrate the typical property of the somewhat

random appearance of strong year classes. Comparison of

recruitment time-series for herring and simulated data plot-

ted against spawning biomass and environmental covariates

(Figure 3) show similar patterns of variability. Also evident

is the usual lack of an apparent relationship between

recruitment and spawner biomass.

Results of fitting GAM, ANN, and NLR models to the

simulated data with different levels of error are presented

in Table 2. Comparisons among methods can be made for

similarly configured models by comparing the models for

each error level. For example, compare the GAM models

(GAM2, GAM4, GAM6), with the NLR models (NLR1,
NLR3, NLR5), and with the ANN models (AN-

N7eANN12). Reviewing the models demonstrates the abil-

ity of the method to identify important variables and screen

out unimportant variables. The NLR model fit to data with

no error (NLR1), described the data perfectly, and showed

no error in the training and forecast data segments. This is

as we expected, because we had to specify the functional

relationship before fitting. In the case just described, we

fit the NLR model to the data using the formula employed

to generate the data. Even though WIND was not related to

recruitment, the NLR procedure incorrectly identified

WIND as a significant variable (NLR2 and NLR4) when

the error level was high. WIND explained 1.5% of the var-

iation in recruitment for error level 1 (NLR2). More dis-

turbingly, WIND explained 13.9% of the variation in

recruitment for error level 2 (NLR4).

The statistically significant GAM models, when fit using

a stepwise selection procedure (GAM1, GAM3, GAM5),

did screen out WIND as unimportant in all cases except

when the error level was high. The GAM5 model incorrectly

selected WIND as an important variable, explaining 13.1%

of the variation in recruitment similar to the non-linear

regression model (NLR4). Results of applying the GAM

model (GAM1) to the Norwegian spring-spawning herring

data are shown in Figure 4. The GAM plot shows a very

weak and statistically insignificant linear relationship of

NAO to herring recruitment. The NAO was correctly
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Figure 2. Time-series of Norwegian spring-spawning herring data, 1907e1999, showing the time-series of age-3 recruits (R in billions),
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data the units are age-3 recruits (R in billions), spawning biomass (SB in million tonnes), sea surface temperature (SST in (C), and wind

anomaly (WIND in m s�1).
identified by the ANNs as not being influential, as indicated

by the low weighting factor, and the ANN results were con-

sistent with results from the GAM model that appear in

Figure 4. The GAM model also suggested a statistically sig-

nificant curvilinear relationship between SB and recruit-

ment, although the overall trend hints at a weak positive

linear relationship between SB and recruitment over the ob-

served range of SB. Also, the GAM model showed that

temperature did not affect recruitment for Kola sea temper-

atures below about 4(C. Thereafter, temperature had a pos-

itive linear relationship with recruitment.

ANNmodels fit and forecast better using the standard non-

linear estimation method compared with using the genetic

algorithm to solve for the model parameters. In general, the

3-hidden neuron ANNs performed better when compared

with the 2-hidden neuron ANN, but the 3-hidden neuron

models carried more parameters. ANNs that included

WIND fit the training segment better than a corresponding

model without WIND (i.e. ANN1 vs. ANN7), but the ANN

model without WIND (ANN7) forecasts better, as indicated

by a lower MSE for the forecast segment. Relative weights
coming out of the ANN models showed WIND as the least

important, even in models that included the variables

(ANN1, ANN2, ANN3, ANN4, ANN5, and ANN6). As indi-

cated by the relative weighting factors, SST was consistently

identified as important. Also of interest is the influence of er-

ror level on the estimated weighting factors of the three-vari-

ableANNmodels (ANN1eANN6).At error level 0, SSTwas

identified as the most important variable, followed by SB.

Wind was consistently identified as the least important. As

the error level increased from 0 to 2, the original large con-

trast between the SB and SSTweighting factors at error level

0 diminished. At error level 2, the ability of the ANN to iden-

tify important variables appeared compromised, with the

weighting factors for SB and SST being almost equal.

Of the four methods examined, NLR was the least accu-

rate at forecasting. GAM and ANN both performed better at

forecasting regardless of the error level (e.g. NLR5 vs.

GAM6 vs. ANN12). The ANN marginally outperformed

a similarly configured GAM in forecast accuracy (ANN8

vs. GAM2), with the performance of each degrading as

more error was added to the data (e.g. GAM2, GAM4,
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Table 2. Summary information from fitting General Additive Models (GAM), Artificial Neural Networks (ANN), and Non-linear Regres-

sion (NLR) statistical methods to the simulated data set. Data are tabulated separately for training and forecasting data segments. The

dependent variable, recruitment, was examined on the arithmetic scale only. Error level codes are explained in the text. Variables in

bold were incorrectly identified as statistically significant.

Model Error Terms # parameters Weights*

Training (# obsZ 37) Forecast (# obsZ 5)

R2 MSE MSE

GAM1 0 RZ SB(1)C SST(3)y 5 d 0.944 0.031 0.018

GAM2 0 RZ SB(2)C SST(2) 5 d 0.919 0.045 0.021

GAM3 1 RZ SB(1)C SST(2) 4 d 0.683 0.129 0.153

GAM4 1 RZ SB(2)C SST(2) 5 d 0.702 0.121 0.168

GAM5 2 RZ SB(3)C SST(3)CWIND(4) 11 d 0.752 0.205 0.366

GAM6 2 RZ SB(2)C SST(2) 5 d 0.555 0.368 0.258

NLR1 0 RZ SB! SST 3 d 1.0 0.0 0.0

NLR2 1 RZ SB! SST!WIND 4 d 0.750 0.101 0.201

NLR3 1 RZ SB! SST 3 d 0.735 0.108 0.239

NLR4 2 RZ SB! SST!WIND 4 d 0.634 0.303 0.329

NLR5 2 RZ SB! SST 3 d 0.494 0.419 0.305

ANN1 0 ANN([SB,SST,WIND],3)z 14 W1Z 0.139 0.933 0.036 0.042

W2Z 0.731

W3Z 0.130

ANN2 0 ANN([SB,SST,WIND],2) 10 W1Z 0.169 0.932 0.037 0.039

W2Z 0.714

W3Z 0.125

ANN3 1 ANN([SB,SST,WIND],3) 14 W1Z 0.388 0.691 0.125 0.193

W2Z 0.621

W3Z 0.041

ANN4 1 ANN([SB,SST,WIND],2) 10 W1Z 0.340 0.691 0.125 0.192

W2Z 0.627

W3Z 0.033

ANN5 2 ANN([SB,SST,WIND],3) 14 W1Z 0.408 0.660 0.323 0.317

W2Z 0.431

W3Z 0.161

ANN6 2 ANN([SB,SST,WIND],2) 10 W1Z 0.408 0.607 0.325 0.357

W2Z 0.395

W3Z 0.197

ANN7 0 ANN([SB,SST],3) 11 W1Z 0.288 0.902 0.054 0.010

W2Z 0.712

ANN8 0 ANN([SB,SST],2) 8 W1Z 0.275 0.876 0.068 0.006

W2Z 0.725

ANN9 1 ANN([SB,SST],3) 11 W1Z 0.195 0.699 0.122 0.209

W2Z 0.805

ANN10 1 ANN([SB,SST],2) 8 W1Z 0.353 0.686 0.128 0.203

W2Z 0.647

ANN11 2 ANN([SB,SST],3) 11 W1Z 0.561 0.50 0.413 0.236

W2Z 0.439

ANN12 2 ANN([SB,SST],2) 8 W1Z 0.546 0.50 0.414 0.240

W2Z 0.454

*Relative weighting factors for each of the independent variables: W1 for SB, W2 for SST, W3 for WIND.

yDegrees of freedom for GAM spline smoothers are indicated in parentheses for each independent variable.

zArtificial Neural Network configuration. Independent variables included in each model are in brackets. Second number in parenthetic pair

represents the number of hidden neurons.
GAM6, and ANN8, ANN10, ANN12). Compared with GAM,

the improved performance of the ANN did come at the cost

of the model having more parameters. It is worthwhile not-

ing that the improvement was still statistically significant as
indicated by the AIC criteria, which imposes a penalty for

the number of parameters in a model.

Results of fitting GAM, ANN, LR, and NLR models to

the spring-spawning herring data are presented in Table 3.
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Figure 4. Plots from applying GAM1 to the Norwegian spring-spawning herring data.
This data set was very long, and issues of the number of pa-

rameters estimated relative to the number of observations

were not as much of a concern as with the simulated

data. The GAM model with only spawning biomass (SB)

and Kola sea temperature (KST) performed best (GAM4),

accounting for 39% of the variation in herring recruitment.

This was not the model with the lowest R2, but it did have

a low R2 compared with GAM1 and also did well in the

forecasting segment, having one of the lowest MSEs on

the arithmetic recruitment scale.

The three-variable NLR model fit and forecast better

compared with multiple linear regression with recruitment

on the log scale (NLR1 vs. LR1 and LR2). The NLR model

accounted for 33% of the variation in herring recruitment.

This value was similar to the GAM fit (GAM4), but the

GAM had a much lower MSE in the forecasting segment.

The ANN models also performed well, accounting for

about 32% of the variation in herring recruitment when

all three independent variables were included in the model.

The ANN as well as the GAM did not perform in the fore-

casting segment (GAM1 vs. ANN2), but the GAM and

ANN performed equally well in the training segment.

Relative weighting factors from the ANN fits, using re-

cruitment on the arithmetic scale, indicated that the Kola

sea temperature (KST) was the most important variable

influencing recruitment, followed by SB, and finally the

NAO was least important (ANN1, ANN2, ANN3). The rel-

ative magnitudes of coefficients estimated from non-linear
regression (NLR1) show similar trends in influence of the

covariates. However, this trend was different when recruit-

ment was on the log scale. In these cases, SB was the most

important variable, followed by the NAO, with KST being

the least important (ANN4, ANN5, ANN6).

One final observation compares a linear regression model

(LR2) with an ANN with no hidden neurons (ANN7). In

this ANN configuration, the input neurons are connected di-

rectly to the output neurons, and it can be seen that this sim-

plified ANN is equivalent to a basic linear regression model.

In general, the data in Table 3 suggest that methods that

fit the training segment on the log scale, then forecast on the

log scale and back-transformed the forecasts to the arithme-

tic scale, did not perform well. Small deviations between

the observed and the predicted values on the log scale

were amplified when back-transformed.

Discussion

Studies in the fisheries literature attempting to explain the

effect of various environmental factors on recruitment are

numerous, e.g. Sutcliffe (1972, 1973); Leggett et al.

(1984); Drinkwater (1987), and Drinkwater and Myers

(1987). The complexity of the marine ecosystem and the in-

herent non-linearities often cause apparent relationships to

fail when retested with additional data (Myers, 1998). Still,

further work on the problem has been advocated (Kope and



Table 3. Summary information from fitting General Additive Models (GAM), Artificial Neural Networks (ANN), Non-linear Regression (NLR) and Linear Regression (LR) statistical methods

to the Norwegian spring-spawning herring data. Data are tabulated separately for training and forecasting data segments on both the natural log and arithmetic scale. The dependent variable,

(# obsZ 79) Forecast (# obsZ 10)

Arithmetic Log Arithmetic

R2 MSE MSE MSE

0.3947 54.30 d 93.78

0.4176 49.36 d 100.29

0.4397 47.49 d 140.46

0.3908 51.63 d 92.93

0.2685 62.00 1.966 401.08

0.0489 80.60 1.092 151.41

0.0057 85.23 1.154 159.92

0.3295 56.82 d 195.97

0.3288 56.88 d 139.71

0.3261 57.11 d 122.30

0.2568 62.99 d 125.16

0.0472 80.75 1.961 224.23

0.0980 76.44 1.599 212.92

0.0593 79.73 1.087 159.40
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age-3 recruitment, was examined on the natural log and arithmetic scale.

Model

Dependent

variable Terms # parameters Weights*

Training

Log

R2 MSE

GAM1 R RZ SB(3)CKST(3)CNAO(1)y 8 d d d

GAM2 R RZ SB(3)CKST(3)CNAO(2) 9 d d d

GAM3 R RZ SB(3)CKST(3)CNAO(3) 10 d d d
GAM4 R RZ SB(3)CKST(3) 7 d d d

GAM5 log R log RZ SB(3)CKST(2)CNAO(1) 7 d 0.5474 2.122

LR1 log R log RZ SBCKSTCNAO 4 d 0.3649 2.970

LR2 log R log RZ SBCNAO 3 d 0.3631 2.986

NLR1 R RZ SBCKSTCNAO 4 d d d

ANN1 R ANN([SB,KST,NAO],3)z 14 W1Z 0.344 d d

W2Z 0.553 d d
W3Z 0.103 d d

ANN2 R ANN([SB,KST,NAO],2) 10 W1Z 0.351 d d

W2Z 0.561 d d

W3Z 0.088 d d
ANN3 R ANN([SB,KST,NAO],1) 8 W1Z 0.421 d d

W2Z 0.574

W3Z 0.005

ANN4 log R ANN([SB,KST,NAO],3) 14 W1Z 0.753 0.3985 2.825

W2Z 0.049

W3Z 0.216

ANN5 log R ANN([SB,KST,NAO],2) 10 W1Z 0.690 0.3964 2.830

W2Z 0.072

W3Z 0.237

ANN6 log R ANN([SB,KST,NAO],1) 6 W1Z 0.571 0.3658 2.973

W2Z 0.068

W3Z 0.360

ANN7 log R ANN([SB,NAO],0) 3 W1Z 0.601 0.3631 2.986

W3Z 0.399

*Relative weighting factors for each of the independent variables: W1 for SB, W2 for KST, W3for NAO.

yDegrees of freedom for GAM spline smoothers are indicated in parentheses for each independent variable.

zArtificial Neural Network configuration. Independent variables included in each model are in brackets. Second number in parent
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Botsford, 1990; Tyler, 1992), despite some criticisms

(Walters and Collie, 1988).

Our results demonstrate that ‘‘model free’’ approaches

(i.e. no a priori specification of a functional relationship be-

tween recruitment and predictor variables) such as GAM

and ANN can be quite flexible and provide useful assis-

tance in identifying relationships between recruitment and

influential factors. GAMs, in particular, have the benefit

of identifying or suggesting the form of the functional rela-

tionship. We recommend first applying non-parametric

GAMs to the predictor and response variables so as to as-

certain the functional form empirically from the data with-

out the need for a priori assumptions, and then exploring

these relationships further with standard parametric techni-

ques or more parsimonious models.

Artificial Neural Networks also show promise, especially

in the forecasting step of the analysis. The relative weight-

ing factors coming out of ANN models provide useful in-

formation, similar to information coming out of stepwise

multiple linear regression models, in that they provide

some sense of ranking of the independent variables accord-

ing to their contribution to the dependent variable and the

degree to which they explain recruitment variability. Cau-

tion should be used when applying ANNs, since the number

of parameters can grow large quickly, and it is easy to over-

parameterize the model. Note that the number of hidden

neurons (h) relative to the number of input (i) and output

variables (o) all directly determine the number of parame-

ters in the model according to the formula (i! hC h!
oC 2). The more hidden neurons, the better the fit to the

estimation segment of the data. This comes at a cost during

the forecasting step, since an ANN that is overfit loses its

ability to generalize to unseen data, a situation that impedes

the ability of the ANN to forecast. When considering esti-

mation in conjunction with forecasting, it is better to con-

sider a balance between the best method for estimation

vs. the best method for forecasting. Often the choice of

one compromises the other.

Despite the promising performance of the non-parametric

methods, we did see examples of spurious correlations in the

analysis of the simulated data. There was more than one

example of a method indicating that a variable was impor-

tant to recruitment when, in fact, it had no relationship to re-

cruitment at all. As noted by Tyler (1992), ‘‘Spurious

correlations are the first enemy of recruitment biologists’’,

and we did see evidence of this unpleasant result increase

as the noise in the data increased. When the data have

a high level of variability, we showed that it is possible

for a method to identify a variable as statistically related

to recruitment when, in fact, it does not have any relation-

ship to recruitment, even under relatively controlled data

conditions. Unfortunately, when analysts are examining

real data, they do not have the benefit of having this knowl-

edge beforehand, as in the case of looking at simulated data

with known properties. This underscores the need for build-

ing good, conceptual models first, then, guided by
hypotheses, the judicious application of the appropriate statis-

tical models (or suite of statistical models) to quality data sets.

Compared with parametric methods, non-parametric

methods such as GAM and ANN performed better using re-

cruitment on the arithmetic scale in both estimation and

forecasting. Log transforms are often performed in order

to make data conform to assumptions of the statistical

method. The transformation stabilizes variances, turns

skewed data normal, and turns multiplicative errors into ad-

ditive errors. However, our results show that estimating on

the log scale, forecasting on the log scale, and then back-

transforming the forecast onto the arithmetic scale turns

small deviations between the observed and the predicted

values on the log scale into large differences on the arithme-

tic scale. In general, methods using recruitment on the log

scale did not perform well when forecasting. Ultimately,

the test of a model is its ability to predict (Tyler, 1992),

especially in an operational sense.

Results from applying the three methods to the herring

data showed the strong influence of temperature, but did

not indicate that the NAO was important. Hjermann et al.

(2004) found a lagged response of herring to temperatures.

It is interesting to note that their observation, that abundance

declined for temperatures below w3.4(C, is very similar to

the GAM relationship between recruitment and temperature

revealed in this study. Our results suggest that a temperature

threshold affects recruitment beginning at 4(C. Mikkelsen

and Pedersen (2004) also showed that herring recruitment

is positively correlated with higher water temperatures.

Others (Sætre et al., 2002) showed that strong year-class

strength at the 0-group and as three-year olds occurs in

warm years when the mean temperature during winter (De-

cembereMarch) at the Kola section is above average. They

concluded that a significant relationship exists between tem-

perature at the Kola section and the 0-group index, both for

mean annual temperatures and on a monthly basis. In an

analysis of stock-environment recruitment models for Nor-

wegian spring-spawning herring, Fisken and Slotte (2002)

concluded that inclusion of sea temperature in the model im-

proved the explanatory ability of the model and removed au-

tocorrelation from the residual variability.

Ottersen and Loeng (2000) offered an explanation for the

mechanism underlying the temperatureerecruitment rela-

tionship. They found that on average, 0-group herring

were longer in length in warm years than in cold ones.

They speculated that high temperatures caused increased

prey production, which led to higher growth rates and

higher survival through vulnerable larval and juvenile

stages. Higher temperatures also contributed to increased

development rates, which also reduced the time spent in

vulnerable life stages. This in situ observation supports lab-

oratory experiments and modelling on herring larvae that

show the positive effects of adequate food and increased

temperatures (Fisken and Folkvord, 1999). Despite these

intriguing suggestions, the role of temperature in the

mid-1960s collapse of Barents Sea herring remains
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controversial, and it cannot be determined if the decline

was a result of heavy fishing, a long-term drop in tempera-

ture, or the unfortunate simultaneous coincidence of these

two influences (Toresen and Østvedt, 2000).

Currently, there are contrasting philosophies regarding

the utility of cause and effect of environmenterecruitment

models. Because of the mixed success in establishing clear

connections between variability in the environment and re-

cruitment, two attitudes flourish regarding the utility of en-

vironmenterecruitment studies. In one camp, Walters and

Collie (1988) criticized correlative environmenterecruit-

ment studies as futile because of biases, measurement error,

and the near certainty of spurious correlations. Others are

optimistic: Kope and Botsford (1990) claim that correlative

studies provide information on patterns that lead to the for-

mulation of testable hypotheses.

The high dimensionality of the problem presents its own

difficulties, since, in many cases, personal judgement and

intuition are the tools used to collapse large multidimen-

sional data sets into a relevant subset amenable to statistical

analysis. Statistical issues aside, we should be guided by the

careful use of conceptual models.

Admittedly, the recruitmenteenvironment problem is

a difficult one, but it does not mean that we should stop ex-

ploring models and techniques to help understand the fac-

tors that control recruitment dynamics and their spatial

and temporal scales of influence. Simple statistical ap-

proaches still have their place if used appropriately. For ex-

ample, it is known that stepwise regression is not a good

tool for prediction, because its selection criterion for vari-

able selection is geared towards error rates rather than pre-

dictive power. Nevertheless, the utility of linear regression,

despite the widespread criticisms levelled against it, is still

being demonstrated today (Carscadden et al., 2000; Stein

and Borovkov, 2004; Yatsu et al., 2005).

The type of data we collect, as they relate to recruitment

variability and the factors that influence it, probably will

not change dramatically in the near future. As advocated

by Beverton (1989), we should endeavour to treat the data

differently in a statistical sense. That is what we have attemp-

ted to do in this study. We advocate more comparative anal-

yses such as we have attempted, so that researchers applying

statistical methods to recruitmenteenvironment data have

a better appreciation of the strengths and weaknesses of

each method, as well as the method’s ability to adequately

perform in the face of common data pathologies.

Acknowledgements

The authors extend to Reidar Toresen and Ole Johan Østvedt

our sincere appreciation for generously sharing the Norwe-

gian spring-spawning herring and Kola sea temperature

data. We also thank two anonymous reviewers for their use-

ful comments and suggestions. An earlier version of the

manuscript was improved by comments offered by David
Somerton and Susan Picquelle. This research is contribution

FOCI-0505 to NOAA’s Fisheries-Oceanography Coordinat-

ed Investigations.

References

Akoi, I., and Komatsu, T. 1997. Analysis and prediction of the fluc-
tuation of sardine abundance using a neural network. Oceanolo-
gia Acta, 20: 81e88.

Augustine, N. H., Borchers, D. L., Clarke, E. D., Buckland, S. T.,
and Walsh, M. 1998. Spatiotemporal modelling for the annual
egg production methods of stock assessment using generalized
additive models. Canadian Journal of Fisheries and Aquatic
Sciences, 55: 2608e2621.

Beare, D. J., and Reid, D. G. 2002. Investigating spatio-temporal
change in spawning activity by Atlantic mackerel between
1977 and 1998 using Generalized Additive Models. ICES
Journal of Marine Science, 59: 711e724.

Beverton, R. J. H. 1989. Closing address: the symposium in per-
spective. Journal of Fish Biology, 35(Suppl. A): 355e363.

Bochkov, Y. A. 1982. Water temperature in the 0e200 m layer in
the Kola-Meridian in the Barents Sea, 1900e1981. Sbornik
Nauchnykh Trudov Polar Institute of Marine Fisheries and
Oceanography of Murmansk, 46: 113e122.

Borchers, D. L., Buckland, S. T., Priede, I. G., and Ahmadi, S.
1997. Improving the precision of the daily egg production
method using generalized additive models. Canadian Journal
of Fisheries and Aquatic Sciences, 54: 2727e2742.

Brey, T., Jarre-Teochmann, A., and Borlich, O. 1996. Artificial neu-
ral networks versus multiple linear regression: predicting P/B
ratios from empirical data. Marine Ecology Progress Series,
140: 251e256.

Carscadden, J. E., Frank, K. T., and Leggett, W. C. 2000. Evalua-
tion of an environmenterecruitment model for capelin (Mallotus
villosus). ICES Journal of Marine Science, 57: 412e418.

Chambers, J. M., and Hastie, T. J. (Eds). 1992. Statistical Models.
S. Wadsworth & Brooks/Cole Advanced Books and Software,
Pacific Grove, CA. 608 pp.

Chen, D. G., Hargreaves, N. B., Ware, D. M., and Liu, Y. 2000. A
fuzzy logic model with genetic algorithm for analyzing fish
stock-recruitment relationships. Canadian Journal of Fisheries
and Aquatic Sciences, 57: 1878e1887.

Chen, D. G., and Irvine, J. R. 2001. A semi-parametric model to
examine stock-recruitment relationships incorporating environ-
mental data. Canadian Journal of Fisheries and Aquatic Scien-
ces, 58: 1178e1186.

Chen, D. G., and Ware, D. M. 1999. A neural network model for
forecasting fish stock recruitment. Canadian Journal of Fisheries
and Aquatic Sciences, 56: 2385e2396.

Ciannelli, L., Chan, K-S., Bailey, K. M., and Stenseth, N. C. 2004.
Non-additive effects of the environment on the survival of a large
marine fish population. Ecology, 85: 3418e3427.

Cury, P., Roy, C., Mendelssohn, R., Bakin, A., Husby, D. M., and
Parrish, R. H. 1995. Moderate is better: exploring non-linear cli-
matic effects on the California northern anchovy (Engraulis mor-
dax). In Climate Change and Northern Fish Populations, pp.
417e424. Ed. by R. J. Beamish. Canadian Special Publication
in Fisheries and Aquatic Sciences, 121.

Cushing, D. H. 1988. The study of stock and recruitment. In
Fish Population Dynamics, 2nd edn, pp. 105e128. Ed. by
J. A. Gulland. John Wiley & Sons Ltd, Chichester, UK.

Daskalov, G. 1999. Relating fish recruitment to stock biomass and
physical environment in the Black Sea using generalized addi-
tive models. Fisheries Research, 41: 1e23.

Davis, L. D. (Ed). 1991. Handbook of Genetic Algorithms. Van
Nostrand and Reinholt, New York. 385 pp.



1268 B. A. Megrey et al.
Dommasnes, A., Melle, W., Dalpadado, P., and Ellertsen, B. 2004.
Herring as a major consumer in the Norwegian Sea. ICES
Journal of Marine Science, 61: 739e751.

Dorn,M.,Barbeaux, S.,Guttormsen,M.,Megrey,B.A.,Hollowed,A.,
Brown, E., and Spalinger, K. 2003. Assessment of walleye pollock
in the Gulf of Alaska. In Stock Assessment and Fishery Evaluation
Report for the Groundfish Resources of the Gulf of Alaska, 2003.
pp. 33e124.NorthPacificFisheriesManagementCouncil, Anchor-
age, AK.

Dragesund, O., Hamre, J., and Ulltang, Ø. 1980. Biology and
population dynamics of the Norwegian spring-spawning her-
ring. In The Assessment and Management of Pelagic Fish
Stocks, pp. 43e71. Ed. by A. Saville. Rapports et Procès-Ver-
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des Réunions du Conseil International pour l’Exploration de la
Mer, 177: 460e465.
Komatsu, T., Aoki, I., Mitani, I., and Ishi, T. 1994. Predication of
catch of Japanese sardine larvae in Sagami Bay using a neural
network. Fisheries Science, 60: 385e391.

Kope, R., and Botsford, L. W. 1990. Determination of factors af-
fecting recruitment of chinook salmon Oncorhynchus tshawyt-
scha in central California. Fishery Bulletin, U.S., 88: 257e269.

Koslow, J. A. 1992. Fecundity and the stock-recruitment relation-
ship. Canadian Journal of Fisheries and Aquatic Sciences, 49:
210e217.
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