
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 305: 219–233, 2005 Published December 23

INTRODUCTION

Seabirds and other higher trophic-level organisms
are known to aggregate and make use of the enhanced
production that usually occurs at tidal fronts (Pingree
et al. 1974, Schneider 1982, Hunt et al. 1996, 1999c,
Begg & Reid 1997, Durazo et al. 1998). Increased pro-
duction at fronts may not always be the case, and at
least 1 front has been shown to have decreased pro-
duction and not to be important for the successful
foraging of seabirds and other predators (Caldeira et
al. 2001). The purpose of this paper was to test the
hypothesis that foraging short-tailed shearwaters
Puffinus tenuirostris aggregate at the inner front of the

SE Bering Sea to prey on euphausiids aggregating to
feed on the enhanced primary production expected to
occur in this feature during summer. 

Millions of short-tailed shearwaters migrate each
year across the equator from their breeding grounds in
southern Australia and Tasmania to winter in the
North Pacific and the Bering Sea (Marshall & Serventy
1956, Warham 1990). Birds arrive in the SE Bering Sea
early in the spring, and by mid-May (Schneider &
Shuntov 1993, Shuntov 1993) thousands are found in
Bristol Bay (see Fig. 1), where they are the most abun-
dant seabird during summer (Hunt et al. 1981b). Short-
tailed shearwaters are often associated with areas of
strong tidal shears (Schneider & Shuntov 1993). This
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species congregates in high numbers in the vicinity of
the 50 m isobath (Hunt et al. 1981b, Schneider &
Shuntov 1993), which corresponds to the location of a
tidal front (i.e. the inner front; Schumacher et al. 1979,
Coachman 1986, Stabeno et al. 2001, Kachel et al.
2002). In the past, shearwaters in Bristol Bay foraged
primarily on the euphausiids Thysanoessa raschii and
T. inermis (Ogi et al. 1980, Hunt et al. 1981a, 1996,
2002, Schneider et al. 1986), which are abundant in
this area (Vidal & Smith 1986, Smith 1991, Coyle &
Pinchuk 2002a). The predominately coastal distribu-
tion of short-tailed shearwaters in Bristol Bay and the
SE Bering Sea has been hypothesized to be the result
of birds being attracted to large surface concentrations
of euphausiids feeding on phytoplankton patches
associated with the inner front (Hunt et al. 1996). 

The inner front is a structural front that separates the
stratified waters of the middle domain from the mixed
waters of the coastal domain of the SE Bering Sea
(Kachel et al. 2002). The stratification of middle domain
water is maintained by heating and wind-mixing of the
top layer and tidal-mixing of the bottom layer (Iverson
et al. 1979a, Kachel et al. 2002). Surface and tidal-
mixing depths converge shoreward of the 50 m iso-
bath, producing a well-mixed water mass where bot-
tom waters are constantly stirred upwards (Iverson et
al. 1979a, Kachel et al. 2002). 

The abundance of nutrients and incident radiation
over the SE Bering Sea supports high levels of primary
production early in the spring (Iverson et al. 1979a,b).
After the spring bloom, nutrients become limiting and
the phytoplankton maximum occurs at 30 m where a
chlorophyll maximum persists into the fall (Iverson et
al. 1979a, Kachel et al. 2002). Early in summer, nutri-
ents are usually exhausted in the upper mixed layer,
although a large reservoir exists below it (Kachel et al.
2002). Nutrients are replenished in the euphotic zone
by intense storms that break down the stratification of
the water (Iverson et al. 1974, Sambroto et al. 1986,
Kachel et al. 2002), and tidally induced vertical mixing
at the inner front that supports local phytoplankton
blooms in the summer (Iverson et al. 1974, Sambroto et
al. 1986, Hunt et al. 1996, Kachel et al. 2002). 

Tidal currents over shallow topography provide a
continuous source of nutrients that are mixed back into
the water column and can stimulate phytoplankton
production (Holligan 1981, Mann & Lazier 1996).
Tidally generated fronts, such as the inner front, sepa-
rate well-stratified waters from well-mixed waters over
shallow continental shelves during summer (Holligan
1981, Mann & Lazier 1996, Maguer et al. 2000). Off-
shore of these fronts, primary production nearly ceases
after nutrients are depleted by the spring bloom
(Pingree et al. 1976). Inshore of these fronts, a nutrient-
rich system develops if the well-mixed water is suffi-

ciently deep, and light-limited phytoplankton never
fully depletes its nutrients (Holligan 1981). A nutrient-
poor system, such as that in the Bering Sea, develops if
the well-mixed water is shallow and nutrients are
depleted by the phytoplankton (Holligan 1981, Walsh
& McRoy 1986). Characteristically, there is a higher
biomass of phytoplankton at tidal fronts than in well-
stratified or well-mixed waters (Pingree et al. 1975,
Holligan 1981, Maguer et al. 2000). Vertical mixing
processes and the relative stabilization of the water
column offshore of the front maintain favorable condi-
tions for maximum phytoplankton growth rates in
these areas (Pingree et al. 1974, Fogg 1984, Fogg et al.
1985, Le Fevre 1986). The high productivity charac-
teristic of tidal fronts is reflected by an abundance of
higher trophic-level organisms such as predatory
fishes, seabirds and marine mammals (Pingree et al.
1974, Schneider 1982, Hunt et al. 1996, 1999c, Begg
& Reid 1997, Durazo et al. 1998). 

In this study, we investigated the role of the inner
front of the SE Bering Sea as a feature of the marine
environment important for successful foraging by
shearwaters. We predicted that foraging short-tailed
shearwaters would aggregate at the inner front of the
SE Bering Sea to prey on euphausiids feeding there on
the enhanced primary production that is expected to
occur in this physical feature subsequent to the spring
bloom. To test this hypothesis, we measured the distri-
bution and abundance of shearwaters, euphausiids
and primary production at and away from the inner
front of the SE Bering Sea. 

MATERIALS AND METHODS

Study area. We studied the distribution of foraging
short-tailed shearwaters relative to the inner front of
the SE Bering Sea by conducting multiple crossings of
the front in 4 predetermined grids located off Slime
Bank, Port Moller, Cape Newenham and Nunivak
Island (Fig. 1). Grid areas consisted of 1 to 5 transect
lines running perpendicular to the bathymetry from
nearshore to beyond the 50 m isobath. Cruises were
carried out in late spring (May to June), and late sum-
mer/early fall (July to September), during 3 consecu-
tive years (1997 to 1999). During each cruise, the phys-
ical structure of the water, primary productivity,
euphausiid distribution and shearwater distribution
and diet were determined. 

A recognizable inner front was found in 41% out of
83 CTD transects occupied during the inner front pro-
ject (Kachel et al. 2002). In these cases the location of
the inner front was taken from Kachel et al. (2002),
who defined the inner edge of the front as ‘the sea-
wardmost location where the maximum gradient in
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temperature by depth was less than 0.05°C m–1 and the
outer edge of front as the location where the maximum
gradient in temperature by depth becomes less than
one-half the greatest value observed on that grid of
stations and less than 1°C m–1 ’. The mean distance
from the coast and depth of the outer and inner edges
of the inner front in each grid area are shown in
Table 1. We used both the mean location and the pre-
cise location of the front to divide transects into regions
(i.e. inshore, mean front, offshore) and to study the
importance of processes at the front relative to the
nearby non-frontal regions. 

Primary productivity. Primary production was mea-
sured using 14C uptake rates from a combination of in-
cubator and in situ experiments. Water samples were
collected using Niskin bottles at mul-
tiple depths. Primary productivity
rates were estimated using 14C-la-
belled bicarbonate. Incubations were
carried out in triplicate under con-
trolled temperature and different
light intensities (Zeeman & Jensen
1990a,b). Primary production rates
were calculated using light–dark
counts, and normalized to chlorophyll
a concentrations (Parsons et al. 1984).
Water-column productivity rates
were estimated from the uptake mea-

surements, chlorophyll profiles, and
light attenuation in the water column
using a numerical integration model
(Zeeman & Jensen 1990a,b). Daily in
situ production was estimated using
chlorophyll-specific production as a
function of light from the incubations
plus in situ measurements of irradi-
ance and chlorophyll (Zeeman 1992).
Photosynthesis versus irradiance
functions and chlorophyll a determi-
nations were obtained as described
by Stockwell et al. (2001). In situ
experiments consisted of duplicate
light and dark bottles, identical to
those used in the incubator experi-
ment, suspended in groups of 4 at 6
depths from the surface to 40 m.
These bottles contained 5 to 10 µCi of
14C. Incubations proceeded for 1 h or
less, and then the bottle string was
retrieved and samples filtered and
counted in a manner similar to that
used for the incubator samples. The
in situ measurements were used as
independent measurements to verify
the incubator estimates.

Distribution of euphausiids. Euphausiid abundance
and distribution were determined with acoustic sur-
veys using a Hydroacoustic Technology (HTI) Model
244 split-beam digital system. Data were collected
using a 43 kHz 7° split-beam and 120 kHz 6° split-
beam transducers. The transducers were towed beside
the vessel at about 3 m s–1 in a dead-weight tow body
about 4 m from the hull and 2 m below the surface.
Sampling was mostly done during the day and re-
stricted to calm conditions when noise due to surface
bubbles and waves were not observed in the data.
These data were first processed to eliminate noise and
to scale the volume-scattering at 43 and 120 kHz to
biomass using sound-scattering models (Coyle & Pin-
chuk 2002a). Euphausiid density in mg m–3 was then
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Fig. 1. SE Bering Sea, showing location of study areas at Nunivak Island, Cape
Newenham, Port Moller and Slime Bank. Transect lines surveyed in each grid
area are shown; (s) locations where shearwaters Puffinus tenuirostris were 

collected for stomach-content analysis

Table 1. Mean (±SD) distance from coast and depth of outer and inner edges of
inner front of SE Bering Sea. Numbers in parentheses: number of times edges of 

inner front were observed during transect runs

Area Outer edge Inner edge
Distance Depth Distance Depth

(km) (m) (km) (m)

Slime Bank 0026 ± 11 (15) 073 ± 17 (15) 015 ± 12 (12) 048 ± 17 (12)
Port Moller 0029 ± 90 (6)0 56 ± 80 (6) 7 (1) 24 (1)
Cape Newenham 146 ± 22 (9) 50 ± 40 (9) 110 ± 49 (9)0 044 ± 60 (9)0
Nunivak Island 0169 ± 14 (25) 054 ± 50 (25) 132 ± 33 (16) 044 ± 70 (16)
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determined for every 180 m interval in 1997, and for
45 m intervals in 1998 and 1999, at vertical intervals of
1 to 2 m. We transformed densities into biomass and
integrated it from the bottom to the surface, producing
estimates of the total amount of euphausiids in the
water column. 

Distribution of shearwaters. Counts of shearwaters
and other birds were made from the bridge of the RV
‘Alpha Helix’ (eye level = 7.7 m above the sea surface)
while the ship was underway. Vessel speed varied
from about 11 km h–1 while conducting acoustic
surveys to about 19 km h–1 when cruising between
oceanographic stations. Birds were counted continu-
ously during daylight hours in a 300 m arc from
directly ahead of the vessel to 90° off the side with best
visibility (i.e. lowest glare) and logged into a portable
computer. Each separate entry in the computer of 1 or
more birds was considered a flock. When continuous
lines of flying shearwaters (>1000 individuals) were
encountered crossing the bow of the vessel, observers
switched to a snapshot method of counting birds to
minimize the overestimate of numbers present (Tasker
et al. 1984). Shearwater behaviors were recorded as
flying, sitting on the water, and feeding; for the pur-
pose of this analysis, we assumed that birds sitting on
the water had previously fed in the vicinity of where
they were resting. 

Seabird counts were carried out during CTD and
acoustic transects, and unless one of the transects was
at night, a minimum of 2 seabird data sets existed for
each transect line. Seabird counts during CTD tran-
sects were interrupted every 25 min, for about 30 min
after arriving at oceanographic stations. Acoustic tran-
sects were carried out without interruption and may
provide a better representation of seabird distribution
along the transect lines. Seabird counts from CTD tran-
sects were included when counts from acoustic tran-
sects were not available (i.e. transects were done at
night). Seabird density (birds km–2) was determined by
dividing the number of seabirds and flocks by the
number of kilometers surveyed.

Diet composition of shearwaters. We determined
the diet composition of shearwaters by shooting 3 to 8
birds per flock from flocks of birds that were foraging
within each grid area. We limited our collections to for-
aging birds so that we could be certain that the birds
had obtained their prey near to the place at which we
collected them. Upon collection, proventriculus con-
tents were removed, weighed and preserved in 80%
ethanol. Wet weight of alcohol-preserved specimens,
their displacement volume, and direct counts were
used to determine the diet of individual birds, as de-
scribed in Hunt et al. (2002). We assumed that individ-
uals shot at the same location were not independent,
and estimated diet composition by averaging the prey-

type volumes and prey-item numbers for birds from
the same collection. We determined the proportion of
prey types by volume and the proportion of zooplank-
ton organisms by number for each bird collection. We
transformed all data into proportions to avoid the pos-
sibility that a few individual birds with large amounts
of one particular prey would disproportionately influ-
ence the assessment of overall diet composition. 

Data analysis. We divided all transects into regions,
determined by the location of the edges of the front,
and calculated the euphausiid biomass and number of
shearwaters in each region to examine whether prey
and birds were being attracted to the front. We used
(1) the mean distance from the coast to the outer
and inner edges of the inner front to divide all transects
into regions (i.e. mean frontal region, MFR), and
(2) the exact location of the edges of the front (Kachel
et al. 2002) to divide the corresponding transects into
regions (i.e. precisely defined fronts, PDF). The latter
include seabird surveys conducted while towing
acoustic equipment along the same transect within 2 d
of the date when the exact location of the front was
determined. In these cases we assumed that oceano-
graphic conditions and the location of the front had not
changed. We also assigned primary production esti-
mates and bird-diet collections to regions determined
by the mean location of the front (Table 1). 

We used Kruskal-Wallis 1-way analysis of variance
to compare the rate of primary production between
regions determined by the mean location of the front.
We used the Wilcoxon matched-pairs signed-ranks test
to compare the density of euphausiids and seabirds
among inshore, front and offshore regions. We used
the euphausiid biomass in a 1 m2 column of water and
the number of shearwaters feeding and sitting on the
water in 1 km2, averaged over the whole length of the
region, as the measure of euphausiid and shearwater
density, respectively. We used regression analysis to
examine whether euphausiids (log-transformed) ag-
gregate in larger densities at the narrower fronts, and
Kruskal-Wallis 1-way analysis of variance and Mann-
Whitney U-tests to compare distance from the coast of
large aggregations of foraging shearwaters and the
diet composition of shearwaters in habitat regions
determined by the location of the front. We sampled
the location of the large aggregations of shearwaters
by sorting all 1 km bins within each grid area by their
number of shearwaters, and separated all bins with
highest values needed to account for 90% of the total
number of shearwaters observed each season, this
comprised 133 of 5701 bins in spring and 131 of 4333
bins in summer. 

We used the utilization test to examine the signifi-
cance of euphausiid and shearwater aggregations in
3 habitat regions—offshore of the front, within the
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frontal area and inshore of the front
(Haney & Solow 1992). We com-
pared the non-overlapping transect
regions previously determined using
the MFR and PDF. The width of the
frontal region was determined by
Kachel et al. (2002). The length of
the non-frontal region varied ac-
cording to the location and length of
transects. Assuming a uniform distri-
bution of shearwaters along each
transect, we calculated an expected
value for the number of shearwaters
and flocks of shearwaters that
should have occurred within each
transect region. This expected value
was based on the total number of
shearwaters and flocks of shear-
waters counted along the transect
and the amount of survey effort
(k surveyed) spent in each region.
Observed values were compared to
expected values and 95% confi-
dence intervals were constructed
according to the methods of Neu et
al. (1974) for the observed proportions of birds for a
Type I error rate of α = 0.05. We conducted these analy-
ses on data pooled by season, year and grid area. 

We used a permutation analysis (Riehle et al. 2001)
to determine the location of the significant aggrega-
tions of euphausiids along the transects, and deter-
mined the observed density of euphausiids within a
5 km sliding window that moved throughout the series
of data. Expected density of euphausiids and confi-
dence intervals were obtained by a permutation test-
ing procedure. The mean, variance and 95% confi-
dence intervals in the expected density of euphausiids
were calculated over 500 random permutations of the
order of 500 bins sampled from the remaining length of
the transect.

RESULTS

Late spring conditions

Neither enhanced primary production nor euphausiid
aggregations were found at the inner front during late
spring (Table 2). The rate of primary production at the
mean front was not significantly different than else-
where along the transect (Kruskall-Wallis statistic =
0.754, df = 2, n = 52, p = 0.686). Although the density of
euphausiids at the MFR was significantly higher than
elsewhere along-transect in 10 out of 21 (48%) tran-
sects, and at the PDF in 9 out of 11 (82%) fronts (uti-

lization test, p < 0.05), no statistical differences in den-
sity of euphausiids were found between regions in the
spring, whether we used MFR or PDF for analyses (Wil-
coxon matched-pairs signed-ranks statistic, p > 0.05).
The density of euphausiids was not significantly higher
in the narrower PDF (Fig. 2a, r2 = 0.460, F = 5.119,
p = 0.064, n = 8). Significant aggregations of euphausi-
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Table 2. Mean (±SE) primary production, density of euphausiids (Thysanoessa
spp.) and abundance of shearwaters Puffinus tenuirostris relative to inner front of
SE Bering Sea, analyzed using mean frontal regions or precisely defined fronts. 

Numbers in parentheses: number of transect lines included in analysis

Region Primary Euphausiid Shearwater Flock
production density abundance abundance

(mgC m–2 d–1) (g m–2) (birds km–2) (flocks km–2)

Mean frontal region
Spring
Inshore 256±680 (19) 3.36±0.81 (19) 25.3±14.7 (22) 2.3±1.00 (22)
Front 437±181 (14) 4.68±1.21 (21) 06.1±2.80 (34) 0.5±0.20 (34)
Offshore 437±124 (19) 6.28±1.25 (19) 00.1±0.03 (34) 0.1±0.02 (34)

Summer
Inshore 262±860 (11) 0.50±0.12 (8) 26.4±17.0 (16) 2.1±1.30 (16)
Front 789±251 (12) 1.60±0.29 (8) 72.0±59.9 (22) 1.9±0.70 (22)
Offshore 1106±303 (18)0 1.85±0.34 (8) 09.2±6.5 0(17) 0.5±0.30 (17)

Precisely defined front
Spring
Inshore – 4.25±1.20 (9) 32.9±32.1 0(8) 0.7±0.400 (8)
Front – 04.55±1.14 (11) 07.6±4.8 0(10) 0.5±0.30 (10)
Offshore – 05.66±1.25 (10) 00.0±0.000 (7) 0.0±0.000 (7)

Summer
Inshore – 0.42±0.20 (6) 31.0±22.30 (8) 4.1±1.800 (8)
Front – 1.62±0.30 (8) 21.0±10.4 (14) 1.3±0.50 (14)
Offshore – 1.80±0.36 (8) 10.4±7.60 (13) 0.6±0.3 0(13)

r2 = 0.4604
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ids occurred within the PDF in 5 out of 11 transect lines
(45%); no clear spatial pattern in the location of these
aggregations was found (Fig. 3).

Aggregations of foraging short-tailed shearwaters
were found inshore of the inner front during late spring
(Table 2). The mean density of shearwaters feeding
and sitting on the water inshore of the MFR was 4
times the density of shearwaters found foraging at the
MFR. The number of birds and flocks at the MFR was
significantly higher than elsewhere along transect in
24 and 22% of the 41 transects and at the PDF in 20%
of the 10 fronts, respectively (utilization test, p < 0.05).
No statistical differences in density of foraging shear-
waters were found between the inshore and the MFR
(Wilcoxon matched-pairs signed-ranks statistic = 0.314,
n = 41, p = 0.754), and significantly higher densities of
foraging shearwaters were found inshore and at the
MFR than offshore of this feature (Wilcoxon matched-
pairs signed-ranks statistic, n = 41, p < 0.05). The num-
bers of flocks of shearwaters showed similar patterns
(Wilcoxon matched-pairs signed-ranks statistic, n = 41,
p < 0.05). 

Zooplankton, particularly euphausiids, were the main
prey consumed by short-tailed shearwaters foraging in
the inner domain of the SE Bering Sea during late
spring. Zooplankton represented, on average, 75% by
volume of the prey consumed in spring, the remainder
of their prey was fishes. The proportion of zooplankton
in the diet decreased from 100% by volume in spring
1997 to 50% by volume in spring 1999 (Fig. 4a); con-
versely, the proportion of sandlance Ammodytes hex-
apterus increased during the same period. The most
important zooplankton consumed were euphausiids,
representing 95% by number of the items consumed
(Fig. 4b). The euphausiid Thysanoessa raschii was the
most common prey item found in the diet, and its con-
sumption decreased from 96% by number in spring
1997 to 38% in spring 1999. The proportion of T. iner-
mis in the diet increased over the same period to 38%
by number during spring 1999. 

Late summer and early fall conditions

We found enhanced primary production at the inner
front and offshore of the front during late summer and
early fall (Table 2). However, the mean rate of primary
production at the MFR was not significantly different
than elsewhere along the transect (Kruskall-Wallis sta-
tistic = 4.143, df = 2, n = 41, p = 0.126). Primary produc-
tion rates at the MFR were intermediate compared to
the low production observed inshore of the front and
the high production observed offshore of this feature.
Significant differences in the rate of primary produc-
tion between years confounded our results (Kruskall-

Wallis statistic = 26.045, df = 2, n = 41, p < 0.001). In the
summers of 1997 and 1998, no significant differences
in the rate of primary production were found between
regions (Kruskall-Wallis statistic, df = 2, p > 0.05); in
summer 1999, the rate of primary production was sig-
nificantly higher at the front and offshore of the front
than inshore of this feature (Kruskall-Wallis statistic =
8.697, df = 2, n = 16, p = 0.013). 

Aggregations of euphausiids were found at the inner
front and offshore of the front during late summer and
early fall (Table 2). The density of euphausiids at the
MFR was significantly higher than elsewhere along-
transect in 6 out of 8 (75%) transects surveyed,
whether we used MFR or PDF for analyses (utilization
test, p < 0.05). The density of euphausiids inshore
of the front was significantly lower than in the MFR
and offshore regions (Wilcoxon matched-pairs signed-
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Fig. 4. Puffinus tenuirostris. Diet composition in spring.
(a) Relative consumption of major prey types (by volume);
(b) consumption of main zooplankton organisms (by number).
n: sample size for each year; unk: unknown (i.e. unidentified) 
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ranks statistic, n = 8, p < 0.05) and there were no signif-
icant differences in density of euphausiids between the
MFR and the offshore region (Wilcoxon matched-pairs
signed-ranks statistic = 0.280, n = 8, p = 0.779). The
density of euphausiids was significantly higher in the
narrower PDF (Fig. 2b, r2 = 0.713, F = 12.420, p = 0.017,
n = 7). Aggregations of euphausiids were found near
the offshore end of the PDF in 6 out of the 8 transects
for which acoustic data were available (Fig. 5).

Foraging short-tailed shearwaters aggregated at the
inner front of the SE Bering Sea during late summer

and early fall (Table 2). The mean density of shearwa-
ters feeding and sitting on the water at the MFR was
about 3 times the density of shearwaters foraging
inshore of the front. The number of birds and flocks
was significantly higher at the MFR in 25 and 17% of
the 24 transects and at the PDF in 47 and 20% of the
15 fronts, respectively (utilization test, p < 0.05). There
were no statistically significant differences in density
of foraging shearwaters between the inshore and the
MFR (Wilcoxon matched-pairs signed-ranks statistic =
–6.222, n = 24, p = 0.539). The density of foraging
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shearwaters at the MFR was 8 times that of birds forag-
ing offshore of the front and this difference was signif-
icant (Wilcoxon matched-pairs signed-ranks statistic =
–1.956, n = 24, p = 0.05). The number of flocks of shear-
waters showed patterns that were similar to that of
densities among regions (Wilcoxon matched-pairs
signed-ranks statistic, n = 24, p < 0.05). 

Short-tailed shearwaters foraged at greater dis-
tances from the coast during late summer and early fall
(Fig. 6). The seasonal differences in distance from the
coast of foraging aggregations were statistically signif-
icant in Nunivak Island, Cape Newenham and Slime

Bank (Mann-Whitney U-test, p < 0.05), where short-
tailed shearwaters foraged closer to the coast in spring
and away from the coast in the summer. The location of
foraging aggregations in summer coincided with the
MFR, with a peak in bird numbers near the outer edge
of the front (Fig. 6). 

The use of the inner front by foraging short-tailed
shearwaters during late summer and early fall varied
greatly between years. There were more shearwaters
foraging at the MFR than expected by chance in 1997
and 1999 and less than expected in late summer and
early fall 1998 (utilization test, p < 0.05). There were no
differences in the number of flocks of shearwaters
between regions in 1997 and 1999, and significantly
fewer flocks foraging at the front in 1998 (utilization
test, p > 0.05). 
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We chose 2 examples of foraging shearwaters associ-
ated with the inner front—in summer 1999 in Cape
Newenham and Port Moller. In Cape Newenham we
found more shearwaters than expected by chance for-
aging at the inner front (utilization test, p < 0.05); 95%
percent of the birds and 80% of the flocks were forag-
ing in this area (Fig. 7). We found birds flying all along
the 130 km transect surveyed; 70% of them were
located at the front. The density of euphausiids in this
particular transect was higher offshore of the front
(acoustically determined biomass, ADB = 2.6 g m–2)
than in the frontal region (ADB = 1.0 g m–2). However,
the stratified waters offshore of the front were green or
milky-green inside the densest part of the cocco-

lithophore bloom (Stockwell et al. 2001). In Port Moller,
the number of shearwaters and flocks of shearwaters
foraging at the inner front were also higher than
expected by chance (utilization test, p < 0.05) (Fig. 8).
All birds and flocks of foraging birds were at the front.
The density of euphausiids in this case was higher at
the front (ADB = 1.7 g m–2) than offshore of the front
(ADB = 0.7 g m–2). 

Zooplankton, particularly euphausiids and crab lar-
vae, were the main prey consumed by short-tailed
shearwaters foraging at the SE Bering Sea during late
summer and early fall. Zooplankton represented, on
average, 70% by volume of the prey consumed, the
remainder was fishes. The proportion of zooplankton
in the diet decreased from 100% by volume in late
summer and early fall 1997 to about 40% by volume of
prey consumed in the same period in 1998 and 1999

228

0

10

20

30

40

50

60

70

80

4 10 16 22 28 34 40 46 52 59

N
um

b
er

 o
f b

ird
s 

(%
)

D
ep

th
 (m

)

10

20

30

40

50

60

D
ep

th
 (m

)

10

20

30

40

50

60

5040302010

Distance to the coast (km)

a

b

c

4

6

8

Fig. 8. (a) Distribution of flying (light bars) and foraging  (dark
bars) Puffinus tenuirostris as proportion of total number dis-
playing each behavior; (b) distribution of acoustically esti-
mated biomass of euphausiids (Thysanoessa spp.) >100 mg
m–3; (c) temperature contours (°C) along Transect E off Port
Moller in summer 1999; arrow indicates precise position of 

front (after Kachel et al. 2002) 

Fig. 9. Puffinus tenuirostris . Diet composition in summer.
(a) Relative consumption of major prey types (by volume);
(b) consumption of main zooplankton organisms (by number). 

n: sample size for each year



Jahncke et al.: Foraging shearwaters in Bering Sea

(Fig. 9a), the proportion of sandlance and Age-0 gadids
(most probably walleye pollock Theragra chalco-
grama) increased during the same period. The most
important zooplankton were the euphausiid Thysa-
noessa raschii (with about 40% by number consumed
in summer 1997 and 1998), crab larvae (about 40% in
summer 1998 and 1999) and copepods (about 50% in
summer 1999) (Fig. 9b).

Diet of shearwaters in relation to inner front

Zooplankton was the main prey consumed by short-
tailed shearwaters foraging at the inner front (Fig. 10a),
representing 82 to 93% by volume of the pooled sam-
ple of consumed prey, depending on whether we used
the MFR or the PDF for analyses, respectively. How-
ever, the proportion of zooplankton in the diet was
not significantly higher at the MFR (Kruskall-Wallis
statistic = 2.125, df = 2, n = 56, p = 0.346) or at the
PDF (Kruskall-Wallis statistic = 1.209, df = 2, n = 16,
p = 0.546) than elsewhere along-transect. The most
important zooplankton organisms found in the diet
were 3 species of euphausiids, crab larvae and cope-
pods (Fig. 10b). The euphausiids Thysanoessa raschii
and T. inermis were consumed in all 3 regions
(Kruskall-Wallis test, df = 2, n = 44, p > 0.05); T. spini-
fera was found mainly in the stomachs of birds col-
lected at the MFR (Kruskall-Wallis statistic = 9.864,
n = 2, n = 44, p = 0.007). The proportion of crab larvae
(Kruskall-Wallis statistic = 7.484, df = 2, n = 44,
p = 0.024) and copepods (Kruskall-Wallis statistic =
3.473, df = 2, n = 44, p = 0.176) was higher offshore of
the MFR. Adult stages of T. raschii and T. inermis were
consumed in spring; in summer, juvenile euphausiids
contributed a large fraction (35%) to the diet, as did
other small zooplankton such as crab larvae and cope-
pods (39%). The proportion of zooplankton consumed
at the MFR decreased from 99 to 78% in summer 1997
and 1998, respectively, to 49% in summer 1999. The
proportion of sandlance in the stomachs of birds col-
lected at the MFR increased in the same period. Sand-
lance was consumed mainly at and inshore of the MFR
(Kruskall-Wallis statistic = 6.22, df = 2, n = 56, p = 0.045).
Age-0 gadids, most probably walleye pollock, were
consumed predominately offshore of the MFR (Krus-
kall-Wallis statistic = 12.131, df = 2, n = 56, p = 0.002). 

DISCUSSION

In this study we found large interannual differences
in primary production at the inner front related to the
anomalous conditions in the Bering Sea during 1997
and 1998 (Hunt et al. 1999a,b, Overland 2001, Stabeno

et al. 2001). In 1997, calm weather and a shallow
mixed-layer produced conditions that allowed phyto-
plankton to grow below the thermocline (Stabeno et al.
2001, Kachel et al. 2002). The inner front moved closer
to shore than previously recorded (Kachel et al. 2002).
Nutrients were depleted early in spring, and few
remained into the summer (Stockwell et al. 2001,
Kachel et al. 2002). No nutrients were available to be
carried to the surface at the inner front; hence primary
production did not occur there or was very low (Kachel
et al. 2002). In 1998 and 1999, stormy weather and a
deeper mixed-layer isolated a reservoir of nutrients in
the bottom layer (Stabeno et al. 2001, Kachel et al.
2002). The inner front moved offshore to near the sea-
ward end of the study grids (Kachel et al. 2002). Fre-
quent strong winds throughout spring and summer
sustained mixing and delayed the onset of the spring
bloom (Kachel et al. 2002). The spring cruises in 1998
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and 1999 took place early in the season, when stratifi-
cation of the water was just beginning and the bloom
was yet to occur (Kachel et al. 2002). Stormy conditions
in 1999 delayed the formation of the 2-layered system
during spring, and the inner front developed later
in the season with colder temperatures and higher
nutrient concentrations than the surrounding waters
(Kachel et al. 2002).

Primary production during late summer and early
fall was higher at the inner front and offshore of the
front than inshore of this feature. This was particularly
clear in late summer 1999, when abundant cold, nutri-
ent-rich water below the pycnocline led to the condi-
tions required for the inner front to supply nutrients to
the upper layers of the water, thus enhancing primary
production (Kachel et al. 2002). However, stormy
weather played an important role in replenishing nu-
trients to the upper layer of the well-stratified waters as
well; high levels of fluorescence and elevated nutrients
were found after storms over the stratified waters and
near the inner front in summer 1999 (Kachel et al.
2002, see also Sambroto et al. 1986). 

The density of euphausiids in late summer and early
fall was higher at the inner front and offshore of the
front than inshore of this feature. The presence of
Age-0 pollock may have caused an underestimate of
euphausiids in these 2 habitats, since their acoustic
signal masks the acoustic signal of euphausiids (Coyle
& Pinchuk 2002a). Age-0 pollock were distributed near
the thermocline and at the front, and dominated the
acoustic record over much of the stratified portion of
the study area during late summer and early fall (Coyle
& Pinchuk 2002a). The density of euphausiids was
higher at the front in 50 to 80% of the transects we
analyzed using the MFR and PDF, regardless of sea-
son. Furthermore, shearwaters foraging at the front
were consuming zooplankton and sandlance; Age-0
pollock was consumed predominantly offshore of the
frontal region. Shearwaters are opportunistic in their
diet and consume the prey most readily available in
their foraging range (Ogi et al. 1980). Shearwaters in
Bristol Bay have been known to prey almost exclu-
sively on euphausiids (Ogi et al. 1980, Hunt et al.
1981a, 1996, 2002, Schneider et al. 1986). However,
their diet changes to mostly fishes in the North Pacific
Ocean and mostly squid near the Bering Sea shelf-
break area (Ogi et al. 1980). In the present study, prey
consumption by shearwaters suggests high availability
of euphausiids and sandlance at the inner front, and
Age-0 gadids offshore of this feature. If readily avail-
able offshore of the front, euphausiids would probably
have been present in larger amounts in the diet, as
was observed in 1997. 

Euphausiids concentrate at fronts as a consequence
of biological (mating or feeding) or physical (conver-

gence or divergence) processes. Flow at the inner front
has been shown to produce the divergence of the
upper layers and convergence of the lower layers of
the water column, suggesting a frontal upwelling
(Coachman 1986). Frontal upwelling was evidenced by
vertical, finger-like structures with elevated nitrate
concentration associated with high standing stocks of
phytoplankton during summer (Kachel et al. 2002).
Areas of enhanced production often attract zooplank-
ton; swarms of Thysanoessa raschii have been ob-
served at the structural front north of St. Paul Island
(Pribilof Islands) during July and August (Coyle &
Cooney 1993). Aggregations of euphausiids at the
front were probably the result of attraction to ephem-
eral patches of high primary production. Euphausiids
can detect phytoplankton patches (Price 1989), and
breeding occurs in the presence of elevated primary
production (Paul et al. 1990). Euphausiids form day-
time near-surface and surface mating-swarms when
spawning during summer (Smith & Adams 1988,
Hanamura et al. 1989), even though most spawning
usually occurs during spring (Smith 1991). The pres-
ence of juvenile stages of euphausiids in the diet of the
birds was probably the result of spring breeding
events; juvenile stages were more abundant over the
shelf break in the summer than in the spring (Stock-
well et al. 2001), as may have occurred in other areas
of the Bering Sea shelf. 

Some enhancement of zooplankton biomass could
occur as consequence of directed swimming behavior,
which would physically increase the accumulation of
organisms independent of their physiological response
to increased production (Franks 1992a). Vertically mi-
grating zooplankton may become concentrated at the
surface when swimming against a current (Simard et
al. 1986, Coyle et al. 1992). The aggregation of other
smaller zooplankton organisms may be due to any
physical or/and biological process(es). The aggregation
of copepods at a front in the Ligurian Sea was attrib-
uted to directive active swimming (Boucher 1984),
while aggregations of copepods at fronts in the Irish
Sea were associated with high surface chlorophyll a
concentrations at the front (Scrope-Howe & Jones 1985).

Primary production, the aggregation of euphausiids
and their later consumption by seabirds and other
higher trophic-level predators occur at different spatial
and timescales. Nutrient transport at tidal fronts is
associated with the periodic effect of tides that break
down the stratification of the water, thereby carrying
nutrients to the surface (Pingree et al. 1974, 1976, Hol-
ligan 1981, Le Fevre 1986). Cyclonic eddies of 20 to
40 km in diameter that may form along the front and
persist for 3 to 4 d are important in the transfer of heat,
salt and nutrients across the stratified regions during
summer (Pingree 1978). It takes about 10 d for nutri-
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ents to build up after the initial formation of the physi-
cal feature (i.e. the front) and about 5 more days for
phytoplankton to reach maximum levels (Franks
1992b). Nutrients forced into the euphotic zone are
incorporated into phytoplankton over a period of days
and into zooplankton in a matter of weeks (Franks
1992b). Fronts and other physical features of compara-
ble extent may last for weeks (or months), while
seabird aggregations may only last for a few hours
(Schneider et al. 1987). The probability of encounter-
ing zooplankton aggregations at the front is likely to be
much higher than the probability of finding large
aggregations of foraging seabirds. Also, while all
seabird aggregations at sea are likely to be associated
with prey, not all prey aggregations need be exploited
by seabirds at a given time (Heinemann et al. 1989). 

Shearwaters foraged primarily in shallow inshore
waters during late spring and shifted to deeper off-
shore waters in late summer and early fall. Possible
explanations for this shift from coastal to offshore for-
aging habitats include nutrient depletion in inshore
waters and depletion of prey inshore of the front by
foraging shearwaters and humpback whales during
spring (Hunt et al. 2002). Foraging in the coastal region
during spring is advantageous for shearwaters be-
cause euphausiid aggregations will be trapped near
the bottom and thus easier to locate and exploit in
these shallow waters (Genin et al. 1988, Hunt et al.
1996). As nutrients are depleted and production ceases
in the coastal domain (Kachel et al. 2002), zooplankton
and fishes (i.e. sandlance) will move and aggregate at
the front or offshore of this feature, where production
continues during summer (Kachel et al. 2002). As the
season progresses to summer and fall, the diurnal day-
light cycle changes to longer periods of darkness and
euphausiids spend more time in the upper layers pro-
viding more foraging opportunities for shearwaters
over deeper waters (K. O. Coyle unpubl.). The occur-
rence of these surface patches of euphausiids is some-
what unpredictable, as most aggregations will concen-
trate near the pycnocline where the chlorophyll
maximum is located. Foraging at the front is advanta-
geous during summer because surface aggregations of
euphausiids are more easily detected by flying birds.
At the front, the pycnocline bends upwards, and
patches of phytoplankton that attract euphausiids are
closer to the surface than they are farther offshore. 

Shearwaters at the inner front foraged on euphausi-
ids and a large fraction of smaller zooplankton. The
proportion of zooplankton consumed at the front
decreased from summer 1997 to summer 1999, while
the consumption of sandlance increased in this area.
Calm weather conditions (Stabeno et al. 2001, Kachel
et al. 2002) and water turbidity due to the presence of
a coccolithophore bloom (Vance et al. 1998, Stockwell

et al. 2001) contributed to high mortality of shearwa-
ters in 1997 (Baduini et al. 2001a). Light attenuation
resulting from the coccolithophore bloom probably
had a negligible influence on underwater foraging;
however, greater turbidity and backscatter of light
may have impaired the birds’ ability to locate prey
from the air (Lovvorn et al. 2001), thus increasing their
in-flight energy demand (Baduini et al. 2001a). Our
results support the idea that birds may not be able to
forage successfully inside a coccolitophore bloom even
when prey is readily available in the area. In summer
1998, shearwaters were feeding on euphausiids, and
more nutrients were available to enhance production
at the inner front; however, we did not find more birds
and flocks of shearwaters in this area. Stormier condi-
tions (Stabeno et al. 2001, Kachel et al. 2002) probably
decreased energy demand for flight in 1998, but the
coccolithophore bloom was still there (Napp & Hunt
2001), reducing their ability to find prey (Baduini et al.
2001a). There was but a minor die-off of shearwaters in
1998 (Hyrenbach et al. 2001), even though their overall
body condition was lower than in 1997 (Baduini et al.
2001b). Age-0 pollock were abundant at the outer ends
of the transects in 1998 and 1999 late in the season, and
shearwaters made use of this prey offshore of the inner
front (Baduini et al. 2001b). In summer 1999, the water
was colder (Coyle & Pinchuk 2002b) and there were
more nutrients to enhance production at the front
(Kachel et al. 2002). More birds and flocks used the
inner front this year, consuming euphausiids and sand-
lance. The overall body condition of the birds in 1999
was better than in 1997 and 1998 (Baduini et al. 2001b)
and there was no shearwater die-off (Hyrenbach et al.
2001). However birds were still taking Age-0 pollock
as prey. 

This paper has shown that there is a clear seasonal
change in the foraging habitats of short-tailed shear-
waters in the inner domain of the SE Bering Sea, where
the inner front is likely to produce an aggregation of
zooplankton organisms and higher trophic-level preda-
tors during summer and fall. The means by which this
aggregation occurs remain obscure, as we found no
clear evidence of enhanced production at the front.
The inner front has been shown to be an ephemeral
feature that forms in spring and recurs ‘intermittently’
(depending on storm activity) throughout the summer
(Kachel et al. 2002). When present, the inner front is
likely to prolong primary production into summer,
favoring the aggregation of zooplankton and their
seabird predators. 
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