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Abstract

We examine how coupling between physical and biological processes influences the production and transfer of energy
to upper trophic-level species in the southeastern Bering Sea. We review time series that illustrate changes in the
marine climate of the southeastern Bering Sea since the mid-1970s, particularly variability in the persistence of sea
ice and the timing of its retreat. Time series (1995 – 2001) from a biophysical mooring in the middle domain of the
southeastern shelf support the hypothesis that retreat of the winter sea ice before mid-March (or the failure of ice to
be advected into a region) results in an open water bloom in May or June in relatively warm water (�3°C). Conversely,
when ice retreat is delayed until mid-March or later, an ice-associated bloom occurs in cold (�0°C) water in early
spring. These variations are important because the growth and production of zooplankton and the growth and survival
of larval and juvenile fish are sensitive to water temperature. The Oscillating Control Hypothesis (OCH) recently
proposed by Hunt et al. (2002), predicts that control of the abundance of forage fish, and in the case of walleye pollock
(Theragra chalcogramma), recruitment of large piscivorous fish, will switch from bottom-up limitation in extended
periods with late ice retreat to top-down in warmer periods when ice retreat occurs before mid-March. In support of
this hypothesis, we review recent data from the southeastern Bering Sea that show 2- to 13-fold changes in copepod
abundance with changes in spring water temperatures of 3 to 5°C. We also provide indirect evidence that the abundance
of adult pollock on the eastern Bering Sea shelf negatively affects the abundance forage fishes (including juvenile
pollock) available to top predators. Although there is evidence that pollock year-class strength is positively related to
temperature, we lack the time series of pollock populations in extended periods (8 – 10 years) of cold-water blooms
necessary to test the OCH. 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, correlations between climate patterns and responses of marine ecosystems have been
the focus of considerable attention. In the North Atlantic, North Pacific and Southern Oceans, decadal-
scale climate changes impact stocks of phytoplankton, zooplankton and fish (e.g. papers in Beamish, 1995;
Murphy, Clarke, Symon & Priddle, 1995; White & Peterson, 1996; Reid, Edwards, Hunt & Warner, 1998;
Hare & Mantua, 2000; McFarlane, King & Beamish, 2000; Pershing et al., 2001). In the North Atlantic,
climate plays a significant role in the population dynamics of the economically important northern cod
(Gadus morhua) (e.g. Ottersen & Stenseth, 2001; Drinkwater, in press). These various fluctuations in the
marine environment in far-flung corners of the world oceans are related through atmospheric teleconnections
(e.g. Overland, Bond & Miletta, 2001).

The Bering Sea, as a marginal ice zone, should be particularly sensitive to climate change, because small
changes in wind velocities can make large differences in the extent, timing and duration of wintertime sea
ice. Although such far-reaching signals as El Niño/Southern Oscillation (ENSO) on occasion may affect
the climate of the Bering Sea (e.g. Overland, Bond & Miletta, 2001), the climate of the southeastern Bering
Sea is most strongly influenced by the Pacific North American pattern (PNA) (with which the Pacific
Decadal Oscillation [PDO] is correlated), and by the Arctic Oscillation (AO) (Overland, Adams & Bond,
1999). Recent work has shown that ecosystem responses to decadal-scale changes in these and other indices
of North Pacific Ocean and Bering Sea climate have been pervasive and of great economic importance
(Francis et al., 1998; Hare & Mantua, 2000; McFarlane et al., 2000; Hollowed et al., 2001).

Climate change can affect both the base of a marine food web and its productivity, as well as the
distribution and abundance of upper trophic-level consumers (Reid, Edwards, Hunt & Warner, 1998; Hare &
Mantua, 2000; Hunt et al., 2002). Thus, there is the potential for climate change to cause shifts in the
distribution and abundance of predators that, in turn, control the abundance of lower trophic level organisms
such as small fish or zooplankton (top-down control). Alternatively, changes in primary or secondary pro-
duction may affect the abundance of higher trophic level organisms that can be supported (bottom-up
control). The relative importance of top-down and bottom-up control of the structure and function of ecosys-
tems has been a central problem in ecology since Hairston, Smith and Slobodkin (1960) hypothesized that
herbivores respond to changes in basal productivity when the food chain is composed of two (no predators)
or four levels (top predators suppress the herbivore’s predator), but not when the food chain is three levels
(the predator limits the herbivore) (Hairston et al., 1960; Slobodkin, Smith & Hairston, 1967). Although
more recent work shows this to be an oversimplification (e.g., Arditi & Michalski, 1996; Vanni, 1996;
Vanni & de Ruiter, 1996), the implications of food web theory are important for fisheries management,
as the removal of top predators may allow intermediate-level predators to increase with the relaxation of
both competition and intra-guild predation (Polis, Myers & Holt, 1989; Polis & Holt, 1992; Winemiller &
Polis, 1996; Crowder, Reagan & Freckman, 1996; Parsons, 1996). Of particular concern is the possibility
that the combined effects of climate change and fisheries removals may shift marine ecosystems into
alternative stable states, which may have a lower yield of species valuable to people (Parsons, 1996;
Scheffer, Carpenter, Foley, Folks & Walker, 2001).
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Recently, Hunt et al. (2002) proposed the Oscillating Control Hypothesis (OCH) to explain climate-
related variation in ecosystem control in the middle domain of the southeastern Bering Sea. According to
this hypothesis, during periods when the spring bloom occurs in cold water, recruitment to populations of
large predatory fish, such as walleye pollock (Theragra chalcogramma), should be limited by bottom-up
processes because zooplankton prey will be in short supply for larval and juvenile fishes. However, during
periods when the bloom coincides with warm water temperatures, the control of pollock populations would
become top-down. This is because copepod growth and production will be high, as will be the survival
of larval and juvenile fishes, including those of large piscivorous fish. As these fish mature, the incidence
of cannibalism and predation on small fish will increase, eventually limiting the recruitment of pollock.

The objective of this paper is to provide further evidence in support of the OCH. To this end, we briefly
review some of the previously published evidence for changes in the marine climate of the southeastern
Bering Sea shelf, and for ecosystem-wide changes in the ecology of organisms responding to the shifts in
climate forcing that occurred in 1976/77 and 1989. We then examine the environmental variability of the
1990s, and what we were able to learn about ecological processes that occurred in earlier periods by
examining some of the impacts of the extreme conditions encountered in the 1990s. We present new
evidence for the OCH, including the importance of depth-averaged temperatures for zooplankton and pol-
lock, and the relationship between the biomass of adult pollock on the shelf and the productivity of Pribilof
Island-nesting black-legged kittiwakes (Rissa tridactyla), a piscivorous seabird that forages for juvenile
walleye pollock and other small fishes.

2. The eastern Bering Sea region

The shelf of the southeastern Bering Sea is wide (� 500 km wide) and shallow (Fig. 1). Shelf waters
are differentiated into three regions, or domains (coastal, middle and outer), by hydrographic features
associated with characteristic bathymetric ranges (Coachman, 1986; Stabeno, Bond, Kachel, Salo & Schum-
acher, 2001). The coastal domain (depth � 50 m) typically is weakly stratified or well-mixed as a result

Fig. 1. Southeastern Bering Sea, Alaska, with 50, 100, 200 and 1000-m isobaths. M2 marks the location of the NOAA biophysical
mooring from which data on the timing of ice retreat and the spring bloom were obtained.
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of the balance between tidal and wind stirring. In the middle domain (depth 50 to 100 m), mixing energy
is insufficient to stir the entire water column in the presence of a positive buoyancy flux during summer.
As a result, in summer, there is a strongly stratified two-layered water column with a wind-mixed surface
layer (15 to 40 m), and a tidally-mixed lower layer (below ~ 40 m). During summer, changes in density
are dominated by temperature rather than salinity. The outer shelf domain (depth 100 to 200 m) has a
wind-mixed surface layer and a tidally mixed bottom layer separated by an intermediate layer.

Transition or frontal zones (middle transition and shelf break front) separate the middle shelf regions
from those of the outer shelf, and also the outer shelf from the slope waters (Coachman, 1986; Schum-
acher & Stabeno, 1998; Stabeno, Schumacher & Ohtani, 1999). A structural front, on average ~ 30 km
wide, separates the middle and coastal domains (Schumacher, Kinder, Pashinski & Charnell, 1979; Kachel
et al., 2002). This feature, which is evident along the entire southeastern shelf, limits the horizontal flux
of salt, nutrients and heat between the middle and coastal domains (Coachman, 1986; Kachel et al., 2002).
A similar feature occurs around the Pribilof Islands, where it enhances feeding opportunities for higher
trophic level organisms (Kinder, Hunt, Schneider & Schumacher, 1983; Decker & Hunt, 1996; Hunt, Coyle,
Hoffman, Decker & Flint, 1996a; Brodeur, Wilson & Ciannelli, 2000).

Sea ice is an important component of the marine environment in the southeastern Bering Sea, and shows
great interannual variability in its extent and duration over the southeastern shelf (Hunt et al., 2002). The
sea ice that reaches the southeastern Bering Sea is annual ice that forms in the lee of islands and coasts
of the Bering Sea. This ice is pushed south by the prevailing winds in winter, melts along its southern
edge as it encounters warm water (Pease, 1980; Niebauer et al., 1990). The amount of ice-melt and its
distribution affects water column temperatures over the shelf for the remainder of the year (Stabeno, Bond,
Kachel, Salo & Schumacher, 2001).

3. Physical evidence for climate change in the eastern Bering Sea

During the past three decades, there have been two so-called regime shifts, one in 1976/77 that was
associated with changes in both the PDO and the AO, and in 1989 there was a less dramatic shift that
was associated primarily with changes in the AO (Fig. 2). Marine climate responses to the regime shifts
were most obvious subsequent to the 1976/77 change. In comparison to the previous decade, there was a

Fig. 2. Time series of the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO), after Overland, Adams and Bond
(1999).
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marked reduction in duration, concentration and extent of winter sea ice (Fig. 3) (see also Hunt et al.,
2002). In addition, there was a lengthening of the period of light summer winds from about three months
to five months, and an overall decrease in the wind speed subsequent to the 1976/77 regime shift (Hunt
et al., 2002). These changes constitute a shift to an earlier spring transition in the Bering Sea that was
related to changes in the Arctic Oscillation (Stabeno & Overland, 2001).

Using the Global Ice and SST data sets to estimate a time series for sea surface temperatures (SST) in
the middle domain at 56°N, 165°W, Hunt et al. (2002) found that there was a period in the early- to mid-
1970s with unusually cold spring and summer SSTs, which was followed by a period from the mid-1970s
to the mid-1980s with unusually warm spring and summer SSTs. In addition to these decadal-scale shifts
in SST associated with the 1976/77 regime shift, between 1960 and 1999 there was also a persistent
warming trend that has resulted in an increase of about 1°C in July SSTs (Bond & Adams, 2002). The
April SST data also show a marked decrease in SST in the late 1960s to mid-1970s, but unlike the SST
trace for June and July, there is no suggestion of a trend toward warming of the April SST post-1978.
Because the water column is well mixed during winter and this condition usually persists into April, one
can infer that bottom temperatures were markedly colder in the period between 1969 and 1978 than they
were either before or after that period. This is supported by observations over the southern middle shelf,
where the heat content during the early 1970s was substantially less than that observed in the 1980s and
1990s (Stabeno et al., 2001). A reduction in SST at the Pribilof Islands provided evidence of the 1989
regime shift in the southeastern Bering Sea (Hare & Mantua, 2000).

4. Where do the late 1990s fit in?

Recent research (Stabeno & Overland, 2001) has pointed to two changes in the physical environment
over the southeastern Bering Sea shelf in the period 1989–1998. Monthly average atmospheric temperatures
during April at 850 millibars were 3°C warmer than those observed during 1980–1988. In conjunction
with this increase, there was a change in the rapidity of sea ice retreat. While ice persisted longer over
the southeastern shelf, over the northeastern shelf it retreated more rapidly, resulting in less ice during
spring. These changes in April are indicative of earlier springs over the eastern shelf, which have had
important repercussions on the ecosystem, but are thought to be related to variability in the AO, as opposed
to the PDO (Stabeno & Overland, 2001).

During 1996–1999, the eastern Bering Sea presented extremes of conditions and great interannual vari-

Fig. 3. Concentration (% cover) of sea-ice over the southeastern Bering Sea shelf between latitudes 57°N and 58°N. Modified from
Hunt et al. (2002).
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ation. Between 1996 and 1998, the eastern Bering Sea experienced longer and calmer summers with a
warmer upper mixed layer than before. In contrast, 1999 was similar to the 1972/1976 period, with cold
temperatures, late departure of ice, and stormy weather. The warmest SST recorded since the 1960s occurred
in 1997, whereas one of the coldest years on record was 1999 (Stabeno, Bond, Kachel, Salo & Schumacher,
2001). Although SSTs in 1997 were among the warmest on record (Stabeno, Bond, Kachel, Salo & Schum-
acher, 2001) the depth-averaged temperature, which is a measure of the heat present in the water column,
that year was not unusual (Fig. 4). In contrast, during May and June 1998, depth-averaged temperatures
were the warmest in the 1990s. This was in part because of the persistence of heat stored in the water
column from the previous fall that had not been completely removed by winter cooling (Stabeno, Bond,
Kachel, Salo & Schumacher, 2001).

Depth-averaged temperatures over the shelf are more closely related to the previous winter’s temperatures
and ice cover than they are to the SST. Over the middle shelf, the surface mixed layer caps the bottom
layer and the sharp thermocline at the base of the surface mixed layer insulates the bottom layer from
surface heating. Thus, winter conditions are likely to be more important to organisms that live at depth in
the water column and are sensitive to environmental temperatures than are spring and summer SSTs, which
may have little effect on the temperatures to which the organisms are exposed. Depth-average temperatures
during most of the 1990s were cooler than those during the warm late 1970s and early 1980s, and warmer
than the cold conditions of the early 1970s (lower set of blue Xs in Fig. 4). However, depth-averaged
temperatures in 1999 were close to the coldest recorded from previous decades. Interestingly enough, both
2000 and 2001 had depth-averaged temperatures at the beginning of May similar to those observed in 1998.

There were also marked differences in biological processes in the 1990s compared to those that had
been observed in earlier years. The biomass of large predatory fish over the eastern shelf surged post 1978,
whereas during the 1980s the biomass of forage fish declined, particularly over the southern portion of the
eastern shelf (Hunt et al., 2002). The late 1970s and 1980s were a period during which the populations
of upper trophic level organisms changed dramatically in abundance and, where studied, in diet (e.g.,
Sinclair, Loughlin & Pearcy, 1994; Decker, Hunt & Byrd, 1995; Hunt, Decker & Kitaysky, 1996b). In the
late-1990s, the biomass of large predatory fish appeared to decline. The biomass of baleen whales on the
shelf increased between the mid-1970s and the late-1980s (Baretta & Hunt, 1994). Populations of piscivor-
ous marine birds and pinnipeds declined, particularly in the vicinity of the Pribilof Islands (Hunt et al.,

Fig. 4. The depth-averaged temperatures from the mooring at M2 (56.8°N, 164°W) are shown as colored lines. The blue Xs represent
the data from the hydrographic surveys between 1966 and 1976, the red Xs from surveys between 1977 and 1994, all collected
within 25 km of the mooring.
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2002). In the late 1990s, coccolithophore blooms dominated the eastern shelf phytoplankton in July and
August (Sukhanova & Flint, 1998; Vance et al., 1998; Napp & Hunt, 2001; Stockwell et al., 2001). There
appear to have been more copepods (during 1997 and 1998) and jellyfish in the late 1990s, but there is
no evidence for significant changes in euphausiid abundances (Coyle & Pinchuk, 2002b; Brodeur, Sugi-
saki & Hunt, 2002). To understand these changes, the mechanisms by which climate affects the fate of
biological production need to be investigated.

5. Biological responses to changes in the marine climate

The timing of the spring bloom and the water temperatures in which it occurs have considerable impact
on the fate of the bloom (Walsh & McRoy, 1986). Studies of springtime primary production in the mid-
1970s emphasized the importance of ice-associated blooms that occurred in cold water (-1°C) (e.g. Alex-
ander & Niebauer, 1981; Niebauer, Alexander & Henrichs, 1990), whereas those working in the late 1970s
and early 1980s emphasized the importance of open water blooms that occurred in comparably warm water
(2° – 5°C) (e.g. Sambroto et al., 1986; Walsh & McRoy, 1986). The variability in the timing of ice retreat
during the 1990s provided an opportunity to reconcile these different views of springtime production regim-
es.

Since 1995, a biophysical mooring has been maintained almost continuously at M2 in the middle domain
of the southeastern Bering Sea shelf (56.8°N, 164°W; Fig. 1). Measurements of temperature, salinity,
currents, and fluorescence or chlorophyll were collected year around, while atmospheric data were collected
during the summer months (Stabeno, Bond, Kachel, Salo & Schumacher, 2001). Data from this mooring,
together with other moorings that were maintained more sporadically, have revealed a clear pattern relating
sea-ice and the spring phytoplankton bloom (Fig. 5). Ice is formed in polynyas on the leeward side of
islands and the Alaskan coast and is blown southward over the shelf. The leading edge of the ice melts
and cools the water to ~ -1.7°C. These cold temperatures are evident in the records as the black areas in
the temperature fields. When the ice retreats, there is a rapid increase in water temperature of 1–1.5°C.
The yellow lines are fluorescence (volts) at approximately 11 m below the surface. Whenever there was
ice over the mooring after mid-March, fluorescence was enhanced at the site.

The burst of early, ice-associated production persists until the nutrients are drawn down. This sequence
of events occurred in 1995, 1997 and 1999. In the remaining four years, either sea-ice was not advected
over mooring site (1996 and 2001), or it retreated before mid-March, 1998, 2000. In those years, a bloom
occurred in late May or even June. This is the classic spring bloom that occurs when winds weaken and
solar energy increases sufficiently to stratify the water column (Eslinger & Iverson, 2001; Stabeno, Bond,
Kachel, Salo & Schumacher, 2001). An examination of primary production and ice charts from earlier
years, supports these patterns of production relative to the timing of ice retreat (Table 1). It is of interest
that Arrigo, Weiss and Smith (1998) found a similar inverse relationship between the timing of sea ice
melt and the timing of the spring bloom in the southern Ross Sea, Antarctica, which they hypothesized
was linked to seasonal changes in the mixing depth.

The timing of the bloom is important because it is related to the temperature of the water over the
southeastern shelf. When sea ice persists late into March or April and the bloom is associated with the
melting ice, when water column temperatures range between –1.7°C and 1°C. In contrast, when the ice
has retreated prior to mid-March and the bloom occurs in open water in May or June, water temperatures
in the upper mixed layer typically range from 2.2°C to 5.1°C or higher. These differences in temperature
are important because of the effect of temperature on the metabolism of organisms. Within the range of
viability, higher temperatures result in increased metabolic rates that cause increases in growth rates,
reduction in time to maturity, and increased production rates of zooplankton (McLaren, 1963; Toda, Arima,
Takahashi & Ichimura, 1987; Ikeda, 1990; Iguchi & Ikeda, 1995). Thus, Vidal (1980) and Dagg, Clarke,
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Fig. 5. Time series of sea water temperature and fluorescence (yellow trace) from Mooring 2 in the southeastern Bering Sea for
1995 through 2001. Note that periods when water temperatures were –1 to –2°C, melting ice was present. In 1997, ice retreat occurred
in April, and the spring bloom occurred early and in association with the ice. In 1998, ice was gone by the end of February, and
the bloom occurred in open water in May. Modified from Stabeno, Bond, Kachel, Salo and Schumacher (2001).

Table 1
Relationship between the timing of ice retreat and the type of spring bloom

Bloom Occurs at the Ice Edge Bloom in Open Water

Ice Gone by mid-March 0 7
Ice remains after late March 6 0
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Nishiyama and Smith (1984) have argued that in the cold waters of the Bering Sea, temperature is a more
important determinant of copepod production than prey abundance. On this basis Walsh and McRoy (1986)
hypothesized that if the spring bloom occurred when water temperatures were warm, zooplankton pro-
duction would be accelerated, and a greater proportion of the primary production would go to support a
pelagic versus a benthic food web. In contrast, in cold years, phytoplankton would fall to the benthos as
a sub-surface chlorophyll layer.

More recently, Huntley and Lopez (1992) showed that temperature alone explains more than 90% of
the variance in copepod growth rates, and that most often in nature, food was not limiting growth. They
found that copepod production could be predicted from temperature by the following relationship:P = B
0.0445 e0.111T, where P is production d-1, B is the initial biomass of copepods, and T is the water temperature
in which the copepods are growing. Based on this relationship, daily biomass production by copepods
would be 0.05 times B at 1°C, 0.07 B at 4°C and 0.11 B at 8°C, assuming that food was not limiting. At
M2, integrated water column temperatures in May were 2 – 3°C warmer in 1998, 2000 and 2001, years
with early ice retreat, than they were in 1995, 1997 and 1999, years with late ice retreat, when temperatures
ranged from –1 and 0°C (Fig. 4). Temperatures in 1996 were cool (~ 1°C) compared to other years with
an early ice retreat. These differences in temperature could result in a 2-fold or greater difference in rates
of copepod production. If we consider the period from 1967 to 2001 (Fig. 4), depth-averaged temperatures
in late May ranged from � -1°C to � 5°C, which could have resulted in more than a two-fold interannual
variation in copepod production. It is reasonable to assume that food does not limit copepod production
during the bloom, but it is less clear whether food is sufficient in the eastern Bering Sea to support maximal
copepod production either before or after the bloom. Slow-growing copepods may suffer higher mortality
rates at early developmental stages, either because of a failure to molt, or because a longer duration at a
small instar exposes them to greater vulnerability to predation (Huntley & Lopez, 1992).

Two sets of data from the middle domain of the southeastern Bering Sea shelf support the contention
that water temperatures during spring have a significant effect on zooplankton production and the biomass
of copepods that will be available to planktivores in a given year. Smith and Vidal (1986) compared the
growth rates of Calanus marshallae in 1980 and 1981, a ‘cold’ year and a ‘warm’ year, respectively and
found that C. marshallae produced two generations in the warmer year, but only one generation in the
cooler year. They also compared the abundance of copepods available in the two years (Table 2). During

Table 2
Responses of calanoid copepods to interannual variation in water temperature during the spring bloom in the Bering Sea. Copepod
data are numbers m-3 from the middle shelf in May 1980 and 1981. ∗ = difference significant at p � 0.05. Data from Smith and
Vidal, (1986)

Variable Year
1980 1981

Onset of Bloom 25 April 5 May
Termination of Bloom 28 May 29 May
Temperature (°C) prior to Bloom – top 20 m 0.97 3.04∗
Temperature during Bloom – top 20 m 2.22 5.06∗
Acartia spp. All copepodids 18.9 8.5
Acartia spp. Adult males and females 9.4 2.8∗
Pseudocalanus spp. All 83.1 308.5∗
Calanus marshallae All copepodids 31.7 30.6∗
Calanus marshallae Adult females 0.1 0.8∗
Metridea pacifica all copepodids 1.6 20.3∗
Oithona spp. 269.6 233.4
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May, which was when the bloom was active in 1980 and 1981, several taxa were more abundant in the
warm year by factors from 3X to 13X , although one taxon decreased in abundance (Smith & Vidal, 1986).

More recently, Coyle and Pinchuk (2002b) reported, depending upon taxon, decreases in copepod abun-
dance between the warm years of 1997 and 1998 and the cold year of 1999 of 2X to 13X (Table 3). They
found that temperatures of the bottom layer and the integrated water column in June were predictive of
copepod biomass, but that upper mixed layer temperatures were not. Data from M2 show that surface
temperatures in late spring and summer are not closely related to depth-averaged temperatures. For instance,
1997 had very warm SSTs in June and July, but depth-averaged temperatures were cooler than normal. In
contrast, SST during June and July 1998 were cooler than 1997, but the depth-averaged temperatures were
among the warmest in the last decade (Stabeno, Bond, Kachel, Salo & Schumacher, 2001).

The studies of Smith and Vidal and Coyle and Pinchuk are not directly comparable, as the Coyle and
Pinchuk data were obtained in June, after the bloom, whereas those of Smith and Vidal (1986) were
obtained in May, during the bloom. Additionally, the gear used by Coyle and Pinchuk differed from that
used by Smith and Vidal, and there is insufficient data to permit controlling for potential differences in
the rates of predation by planktivores. Nevertheless, we now have evidence of significant shifts in the
abundance of copepods, both when going from a cold year to a warm year and when going from warm
years to a cold year. These shifts were greater than would have been predicted by the relationship between
temperature and production modeled by Huntley and Lopez (1992), implying that the differences seen in
the abundance of copepods between the warm and cool years must involve temperature-related differences
in other factors, such as mortality. These data support the hypothesis that, in years when sea ice lingers
late into the spring and the spring bloom occurs in cold water in association with the melting ice, there
will be fewer copepods available to fish and other planktivores than in years when the ice retreats early
and the bloom occurs in late spring in warm water.

Several authors have investigated the coupling between secondary production and planktivores, including
walleye pollock (Theragra chalcogramma) in the eastern Bering Sea. Springer (1992) estimated that pollock
should consume virtually all of the secondary production of the middle and outer domains. More recent
modeling efforts by Trites et al. (1999) and Aydin et al. (in press) suggest that in both the 1980s and
the1990s over 90% of copepod production has been required to support planktivores (73% to large zoo-
plankton, 11% to juvenile pollock, 8% to adult pollock, 15% other, 7% unaccounted for). These copepod-
consumers include not only pollock, but also larger zooplankton such as euphausiids and gelatinous zoo-
plankton. In the vicinity of the Pribilof Islands, Swartzman et al. (in press) have observed an inverse
relationship between the biomass of age-1 pollock and the biomass of zooplankton remaining at the end
of summer. Interestingly, Coyle and Pinchuk (2002a) found no significant differences in copepod abun-

Table 3
Responses of calanoid copepods to interannual variation in water temperature during the spring bloom in the Bering Sea. Copepod
data are numbers m-3 from the middle shelf and inner shelf in June 1997, 1998 and 1999. ∗ = difference significant at p � 0.05.
Data from Coyle and Pinchuk (2002b) and Hunt et al. (2002)

Variable Year
1997 1998 1999

Onset of Bloom Mid-April Early May Late March
Depth averaged Water Temperature during June (°C) 5.53 3.79 0.45∗
Acartia spp. 961 711 64∗
Pseudocalanus spp. 1168 893 240∗
Calanus marshallae 34 72 3.7∗
Calanoid nauplii 616 626 322∗
Oithona similis 99 219∗ 28
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dances in the summers (late July – early September) of 1997, 1998 and 1999 despite the striking differences
seen between June 1999 and the two warmer years (1998 and 1999). They concluded that in each year
copepod abundances were reduced to similar levels by a combination of predation and declining primary
production. An interpretation of this observation is that this common level of abundance represented a
‘ threshold’ below which predators had little further effect on reducing copepod abundance, and that this
‘ threshold’ was not affected by the initial abundance of copepods in the ecosystem. It is reasonable to
hypothesize that in years with a cold spring and low production of copepods, planktivore growth and
survival may be limited by their ability to obtain sufficient prey.

6. The oscillating control hypothesis

To link changes in climate, pollock recruitment and the availability of forage fish to marine birds and
mammals in the middle domain of the southeastern Bering Sea, Hunt et al. (2002) developed the ‘Oscillating
Control Hypothesis’ (OCH) to relate decadal-scale changes in climate to alternation between bottom-up
and top-down control of large piscivorous fish recruitment in the southeastern Bering Sea (Fig. 6). This
hypothesis predicts that, when there is a prolonged series of years with delayed ice retreat and spring
phytoplankton blooms that occur in cold water, the production of large piscivorous fish, such as pollock,
should be limited from the bottom-up by a lack of zooplankton, in particular calanoid copepods, to support
larval and juvenile fish. In contrast, in periods of late blooms in warm water, there will be greater supplies
of zooplankton that initially will result in higher rates of recruitment. However, as these large year-classes
mature and become predators of small fish, control of recruitment will become top-down.

Four elements are essential to this hypothesis:

1. The timing of sea ice retreat in spring determines whether there will be either an early, ice-associated
bloom in cold water, or a late-spring, open water bloom in warm water.

2. Copepods, a critical prey of larval and juvenile pollock, are sensitive to the temperature of the water
in which they are developing. Therefore copepod production and the number of cohorts produced in
years when the spring bloom occurs in warm water would be substantially greater than in years when
the spring bloom occurs in cold water.

3. There is close coupling between the production of crustacean zooplankton and demand for this resource
by planktivores. Consequentially, in cold years, a reduced production of copepods could limit the survival
of either larval or juvenile pollock.

4. When adult pollock and other large piscivors are abundant, they have the potential to control recruitment
of juvenile pollock because of cannibalism.

Evidence supportive of elements 1, 2 and 3 has been presented above and appears adequate as a starting
point for building the hypothesis. Water temperatures are lower when the bloom occurs early in the spring,
in association with the ice, as compared to when it occurs in open water in May or June (Fig. 5) (Hunt
et al., 2002). Likewise not only do physiological (e.g., Mclaren, 1963) and empirical studies (Huntley &
Lopez, 1992) show that the growth and reproduction of copepods are sensitive to temperature, but in the
middle domain of the southeastern Bering Sea, there is direct evidence that springtime sea temperatures
are more important than prey abundance in limiting the growth of small-bodied copepods (e.g., Vidal,
1980; Dagg, Clarke, Nishiyama & Smith, 1984). The data of Smith and Vidal (1986) (Table 2) and those
of Coyle and Pinchuk (2002b) (Table 3) show that the result is a positive relationship between integrated
water temperature and the abundance of copepods available to support juvenile fishes. Models suggest that
planktivores can be food limited, as do data on the impact of salmon on the plankton of the subarctic North
Pacific (Shiomoto, Tadokoro & Ishida, 1997) and the central Bering Sea (Sugimoto and Tadokoro, 1997).
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Data indicating that adult pollock are capable of exerting top-down control of their own recruitment
support element 4. Cannibalism of older fish on smaller fish is well documented (Dwyer, Bailey & Liv-
ingston, 1987; Livingston, 1989; Livingston & Lang, 1996; Wespestad & Quinn, 1996). Quinn and Niebauer
(1995) showed that the relationship between the spawning biomass of pollock and recruitment fits a Ricker
curve and suggested that the most likely density-dependent mechanism for explaining this relationship is
cannibalism. Wespestad, Fritz, Ingraham and Megrey (2000) provide evidence that in recent years strong
year-classes of pollock in the southeastern Bering Sea have been associated with wind forcing that resulted
in the advection of eggs and larval pollock onto the shelf in areas where they would be isolated from
cannibalism. Models of pollock recruitment in the Gulf of Alaska show that large piscivorous fish are
capable of exerting top-down control of pollock recruitment (Bailey, 2000), and it seems likely that adult
pollock in the Bering Sea are also capable of top-down control when their biomass is sufficient. It is
relevant that there is a significant negative relationship between the biomass of age-3+ pollock on the
eastern Bering Sea shelf and the production of young by piscivorous black-legged kittiwakes nesting on
the Pribilof Islands (Fig. 7). The implication of this observation is that adult pollock are able to depress
the abundance of small fishes consumed by kittiwakes sufficiently to impact the ability of kittiwakes to
raise young (Livingston, Low & Marasco, 1999).

The OCH predicts that in cold years a lack of prey will limit the survival of age-0 and age-1 pollock.
Evidence that pollock year-class strength is reduced in cold years was developed by Quinn and Niebauer
(1995). They found that, after fitting a Ricker spawner-recruit curve to pollock recruitment at age two, the
residuals of pollock recruitment were significantly correlated with air temperature at St Paul Island, Pribilof
Islands, when lagged by a year (R = 0.462 ± 0.204 SE, p � 0.05). In contrast, there was little or no effect
of sea surface temperature on recruitment. Air temperature at St. Paul Island is influenced by winter sea
ice cover and sea surface temperatures in the immediate vicinity of the island, where the water column is
well mixed, the surface temperature reflects the integrated water column temperature. Thus air temperature
at St. Paul Island may provide a better indication of the water column temperatures to which developing
copepods would have been exposed than would SSTs of the middle domain obtained away from the island.

The OCH provides a mechanism that would explain the abrupt increase in the biomass of adult pollock
over the eastern shelf following the 1976 regime shift. The warm years following the shift would have
resulted in increased production of copepods and high survival of larval and juvenile pollock, as the biomass
of adult pollock was still moderate. However, with the increase in the biomass of adult pollock as the
1978 and other strong year-classes matured, there would have been increased levels of cannibalism that
would have reduced the survival of young pollock (Bailey, 2000; Hunt et al., 2002). This reduction in the
abundance of young pollock appears to have been particularly severe in the southeastern Bering Sea,
where stocks of Pacific cod (Gadus macrocephalus), arrowtooth flounder (Atheresthes stomias), and other
piscivorous fishes increased, possibly in response to the warming sea temperatures (Hunt et al., 2002).

Fig. 7. Relationship between the biomass of age-3 and older walleye pollock over the eastern Bering Sea shelf and the production
of young per nest by black-legged kittiwakes nesting in the Pribilof Islands. Pollock data from Ianelli, Fritz, Honkalehto, Williamson
and Walters (2000) and kittiwake data from Dragoo, Byrd and Irons (2000). Modified from Livingston, Low and Marasco (1999).
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These increases in predator abundance apparently caused a shift to top-down from bottom-up control of
recruitment (Bailey, 2000; Hunt et al., 2002).

A decrease in the abundance of age-1 pollock and capelin (Mallotus villosus) in the vicinity of the
Pribilof Islands coincided with the warmer temperatures and increases in the biomass of adult pollock
there, and deprived the marine birds and pinnipeds there of two of their most important forage fishes.
These decreases may have been caused both by predation by large pollock, and in the case of capelin, by
warming of the water to temperatures above the preferred range (Hunt et al., 2002). In 1999, the water
temperatures in the southeastern Bering Sea cooled, and capelin have been reported to have returned to
areas of the Gulf of Alaska and the southeastern Bering Sea from which they have been largely absent
since the late 1970s (Sue Moore, Pers. Comm.).

When top-down processes regulate pollock recruitment, the removal of cannibalistic adult fish should
improve the survival of pre-recruits. Thus during warm regimes, fisheries removals of adult fish should be
compensated by improved recruitment. In contrast, in cold regimes with bottom-up regulation, adult fish
may not be as quickly replaced because larval and/or juvenile survival is food-limited. If, as appears to
be the case, adult pollock are limiting the production of black-legged kittiwakes at the Pribilof Islands
through competition for forage fish, then reduction of the biomass of adult pollock on the shelf could lead
to improved reproductive success of kittiwakes. Since other top predators, such as murres (Uria spp.) and
northern fur seals (Callorhinus ursinus) have considerable dietary overlap with kittiwakes, it is possible
that reduction of adult pollock biomass might also be of advantage to them. However, reduction of pollock
biomass alone would be unlikely to benefit these top predators in the long run if populations of other large
piscivorous fish, such as Pacific cod and arrowtooth flounder were to increase in the absence of competition
from pollock.

Despite the shift to cooler water temperatures in 1999, there is no evidence of a significant decline in
the biomass of adult pollock in the southeastern Bering Sea as of 2001. Both 2000 and 2001 were warm
years, and the 1996 year-class was a large one, which will take a number of years to be removed by natural
mortality or fisheries. Thus, there has yet to be a sufficiently prolonged cold period to test the prediction
of the OCH that pollock should become bottom-up limited during an extended period of cold. In the
meanwhile, the data of Coyle and Pinchuk (2002b) show that, in the cold year of 1999, there was a major
reduction in the abundance of copepods, and thus the potential for the development of bottom-up limitation.
A decline in the size-at-age of age-1 or 2 pollock in years with low water temperatures would provide
support for such bottom-up limitation. If pollock are presently subject to both bottom-up and top-down
limitation of recruitment, they are potentially more vulnerable to over-fishing than they were when top-
down processes were likely the primary control of recruitment.

Adult pollock diets include zooplankton in addition to small fish (Dwyer, Bailey & Livingston, 1987;
Livingston & Lang, 1996). Variation in the abundance of zooplankton may affect the survival of forage
fishes by causing adult pollock to alter the proportion of small fish in their diets (Cooney et al., 2001).
For example, when the biomass of large copepods dropped below 0.2 g m-3 in Prince William Sound,
northern Gulf of Alaska, adult pollock switched from a diet rich in copepods to one that included a greater
proportion of nekton, including juvenile pink salmon (Oncorhynchus gorbuscha) (Willette et al., 2001). In
the southeastern Bering Sea, pollock take both small fishes and zooplankton, including copepods (Dwyer,
Bailey & Livingston, 1987; Livingston & Lang, 1996), and it is likely that prey switching similar to that
recorded in Prince William Sound occurs. The effects of this switching would be additive to the effects
of the OCH. During cold regimes when copepods are predicted to be in low abundance, adult pollock
individually might be expected to increase their consumption of small fish, including juvenile pollock,
although if the adult population was itself low, it might take a smaller proportion of the total supply of
small fishes than would be the case when populations of these large fish were high. The impact of the
switching behavior on the recruitment of pollock will depend on the spatial distribution of adult and juvenile
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fish, as well as on the relative abundance of juvenile fish and zooplankton at the small spatial scales at
which foraging takes place. Additional research on these aspects of pollock foraging ecology are required.

The OCH most closely applies to biophysical dynamics over the middle shelf of the southeastern Bering
Sea. It is unlikely to apply to the coastal domain, as the inner front appears to block age-0 pollock from
that region (Kachel et al., 2002; Hunt et al., 2002). It is also unclear whether the OCH applies in the outer
domain, as most of the copepod biomass there consists of large oceanic species with annual life cycles
and the ability to graze the bloom very early in the spring (Cooney & Coyle, 1982). In addition, sea ice
occurs rarely over the outer shelf south of the Pribilof Islands. Relatively little is known about zooplankton
dynamics and the biology of larval and juvenile fish over the shelf north of St Matthew Island. Ice remains
there longer there than in the southeastern Bering Sea, and shows less interannual variation (Hunt et al.,
2002). Thus, it might be expected that most phytoplankton production there would be associated with the
melting of the sea ice and would occur in cold water as described by Alexander and Niebauer (1981) and
Niebauer, Alexander & Henrichs, 1990, 1995). These conditions might be expected to result in slower
growth and a lesser production of zooplankton, and thus a bottom-up limitation of fish recruitment compared
to farther south on the shelf. New studies are needed to examine the ability of the northern parts of the
shelf to support larval and juvenile fish, and how climate change may affect the relative importance of the
northern and southern portions of this shelf to support fish populations. Investigation of production and its
fate in the northern Bering Sea might provide a useful means of testing the prediction of the OCH that
during a period of repeated cold springs with ice-associated blooms, the system should become controlled
by bottom-up limitation of fish recruitment.
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