Questionnaire for Global Ocean Acidification Network Map

Dear Colleague,

The Global Ocean Acidification Network map provides an interactive representation of current and planned ocean acidification platforms and observing activities. Please view the map by clicking on the "<u>Global Map of deployed and planned OA platforms</u>" link on the IOCCP Ocean Acidification website: <u>http://www.ioccp.org/ocean-acidification</u>

- Verify the location, status, and information for any ocean acidification platforms you have deployed or plan to deploy.
- Fill out the questionnaire below to update and/or add platforms to the map
- Save the completed form, then e-mail updates and responses to <u>cathy.cosca@noaa.gov</u>

Participant/Investigator information:

Name:

Organization/Affiliation:

Partners:

Project Website:

Funding Agency:

Contact e-mail address:

Platform information:

New Updated

Type of Platform:

Mooring	Ship-based time series	VOS / SOO cruise	VOS / SOO cruise	
Profiling glider	Pier	Float		
Other:				

Date of deployment:

Duration and/or frequency of deployment:

Location of deployment:

For stationary platforms (moorings, piers, anchored sensors):

Latitude and Longitude of deployment:

<u>For non-stationary platforms</u> (ship-based time series, Volunteer Observing Ship (VOS) / Ship of Opportunity (SOO) cruises, gliders, floats):

In a separate file, please provide:

- actual coordinates from a previous cruise or deployment, or
- start, end, and way point coordinates for a planned cruise or deployment.

Sensors deployed or planned, including name and approximate depth of each parameter being measured (check all that apply):

Deployed	Planned	Parameter	Manufacturer/Type of Sensor	Approximate Depth	Calibration Samples
		pН			
		pCO ₂			
		TCO ₂			
		Alkalinity			
		Salinity			
		Temperature			
		Dissolved O ₂			
		Chlorophyll			
		Turbidity			
		NH ₄			
		NO ₂			
		NO ₃			
		PO ₄			
		Si(OH) ₄			