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Volcanic Generated
Tsunami Event 2. Caldera collapse 3. Shock wave from explosion

Tonga volcanic tsunami was detected

1. Air pressure Lamb Model - wave characterization by the global DART array

The tsunami model with Lamb wave
| generation mechanism explains the
el L mascesensenatll  or1ival time of the first wave signal

. recorded at most DARTS, which
propagated just below the speed of
sound in the atmosphere. It also
reproduces the arrival of the following
wave train propagating with the tsunami
long wave celerity. Significant differences
remain in amplitudes between the model
and the DART observations, especially for
DARTs near New Zealand and Australia.
Nevertheless, the DART amplitudes in the
far-field appear to be reproduced well by
this simplified model. The higher-
frequency tsunami signals at the near-

Model results based on Lamb model compared with ~ field DARTs may have been generated by
tide gauge records other mechanisms explained below.
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The Bottom Pressure Recorders (BPRs) of the DART systems
recorded the waves of the Tonga tsunami led by the air pressure
waves from the volcano explosion (Figure 1). That mixture of data
in the DART records complicated the tsunami analysis and source
inversion process for modeling the event.

Model results based on Lamb model compared with
DART observations
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e (aldera collapse model is based on Pakoksung et al. (2022, Scientific Reports) with an
explosion energy of 25 Mt (megatons of trinitrotoluene)

e Tsunami waves are simulated using nonhydrostatic NEOWAVE.

e The collapse model produces the short-period waves reasonably well at the nearest DART

e Our model shows the Caldera Collapse source plays a major role in the inundation impact
along Nuku'alofa’s coastline
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e Model indicates the tsunami waves induced by the initial shock are
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Borerro et al., (2022, PAGEOPH).

Conclusions: Implications for Forecasting Volcanic Tsunamis
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