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Methods

Abstract

Seasonal manifestations of ocean acidification (OA) are
already occurring in the Bering Sea, in the form of late
summer bottom water conditions that are undersaturated
with respect to aragonite. Although these more acidic
conditions are generated by natural processes, OA 1s
projected to increase their duration, magnitude, and spatial
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more acidic, thus they pass key threshold values much
sooner than surface waters. This amplified subsurface
acidification 1s driven by an enhanced productivity-
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productivity generates increased surface ocean carbon
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